Search > Results

You searched for: 2022 (Year of publication)

Showing 101 - 150 of 468

Experiment number
  • If needed, multiple experiments were identified in a single publication based on differing sample types, separation protocols and/or vesicle types of interest.
Species
  • Species of origin of the EVs.
Separation protocol
  • Gives a short, non-chronological overview of the different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Details EV-TRACK ID Experiment nr. Species Sample type Separation protocol First author Year EV-METRIC
EV210076 2/6 Rattus norvegicus Urine UF
qEV
SEC (non-commercial)
Hinzman CP 2022 63%

Study summary

Full title
All authors
Hinzman CP, Jayatilake M, Bansal S, Fish BL, Li Y, Zhang Y, Bansal S, Girgis M, Iliuk A, Xu X, Fernandez JA, Griffin JH, Ballew EA, Unger K, Boerma M, Medhora M, Cheema AK
Journal
J Transl Med
Abstract
Urinary extracellular vesicles (EVs) are a source of biomarkers with broad potential applications ac (show more...)Urinary extracellular vesicles (EVs) are a source of biomarkers with broad potential applications across clinical research, including monitoring radiation exposure. A key limitation to their implementation is minimal standardization in EV isolation and analytical methods. Further, most urinary EV isolation protocols necessitate large volumes of sample. This study aimed to compare and optimize isolation and analytical methods for EVs from small volumes of urine. (hide)
EV-METRIC
63% (92nd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Urine
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Ultrafiltration
Commercial method
Size-exclusion chromatography (non-commercial)
Protein markers
EV: TSG101/ ANXA5/ CD81/ Alix/ Flotillin1/ EpCAM/ CD63
non-EV: GM130
Proteomics
no
Show all info
Study aim
New methodological development/Biomarker/Identification of content (omics approaches)
Sample
Species
Rattus norvegicus
Sample Type
Urine
Separation Method
Ultra filtration
Cut-off size (kDa)
100
Membrane type
Regenerated cellulose
Commercial kit
qEV
Size-exclusion chromatography
Total column volume (mL)
3.5
Sample volume/column (mL)
0.15
Resin type
Not Specified
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
Flotillin1/ CD63/ EpCAM/ ANXA5/ TSG101/ Alix/ CD81
Detected contaminants
GM130
Characterization: Lipid analysis
Yes
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
156.5
EV concentration
Yes
EM
EM-type
Cryo-EM
Image type
Close-up
EV210076 3/6 Rattus norvegicus Urine Other/ EVTrap Hinzman CP 2022 63%

Study summary

Full title
All authors
Hinzman CP, Jayatilake M, Bansal S, Fish BL, Li Y, Zhang Y, Bansal S, Girgis M, Iliuk A, Xu X, Fernandez JA, Griffin JH, Ballew EA, Unger K, Boerma M, Medhora M, Cheema AK
Journal
J Transl Med
Abstract
Urinary extracellular vesicles (EVs) are a source of biomarkers with broad potential applications ac (show more...)Urinary extracellular vesicles (EVs) are a source of biomarkers with broad potential applications across clinical research, including monitoring radiation exposure. A key limitation to their implementation is minimal standardization in EV isolation and analytical methods. Further, most urinary EV isolation protocols necessitate large volumes of sample. This study aimed to compare and optimize isolation and analytical methods for EVs from small volumes of urine. (hide)
EV-METRIC
63% (92nd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Urine
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Commercial method
Protein markers
EV: TSG101/ CD63/ CD81/ Alix/ Flotillin1/ EpCam/ ANXA5
non-EV: GM130
Proteomics
no
Show all info
Study aim
New methodological development/Biomarker/Identification of content (omics approaches)
Sample
Species
Rattus norvegicus
Sample Type
Urine
Separation Method
Commercial kit
Other/ EVTrap
Size-exclusion chromatography
Resin type
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
Flotillin1/ Alix/ CD63/ TSG101/ EpCam/ ANXA5/ CD81
Detected contaminants
GM130
Characterization: Lipid analysis
Yes
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
115.9
EV concentration
Yes
EM
EM-type
Cryo-EM
Image type
Close-up
EV210076 5/6 Rattus norvegicus Urine UF
qEV
SEC (non-commercial)
Hinzman CP 2022 63%

Study summary

Full title
All authors
Hinzman CP, Jayatilake M, Bansal S, Fish BL, Li Y, Zhang Y, Bansal S, Girgis M, Iliuk A, Xu X, Fernandez JA, Griffin JH, Ballew EA, Unger K, Boerma M, Medhora M, Cheema AK
Journal
J Transl Med
Abstract
Urinary extracellular vesicles (EVs) are a source of biomarkers with broad potential applications ac (show more...)Urinary extracellular vesicles (EVs) are a source of biomarkers with broad potential applications across clinical research, including monitoring radiation exposure. A key limitation to their implementation is minimal standardization in EV isolation and analytical methods. Further, most urinary EV isolation protocols necessitate large volumes of sample. This study aimed to compare and optimize isolation and analytical methods for EVs from small volumes of urine. (hide)
EV-METRIC
63% (92nd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Urine
Sample origin
13 Gy ionizing radiation
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Ultrafiltration
Commercial method
Size-exclusion chromatography (non-commercial)
Protein markers
EV: TSG101/ ANXA5/ CD63/ Alix/ CD81/ Flotillin1/ EpCam
non-EV: GM130
Proteomics
no
Show all info
Study aim
New methodological development/Biomarker/Identification of content (omics approaches)
Sample
Species
Rattus norvegicus
Sample Type
Urine
Separation Method
Ultra filtration
Cut-off size (kDa)
100
Membrane type
Regenerated cellulose
Commercial kit
qEV
Size-exclusion chromatography
Total column volume (mL)
3.5
Sample volume/column (mL)
0.15
Resin type
Not Specified
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
Flotillin1/ EpCam/ ANXA5/ CD63/ TSG101/ Alix/ CD81
Detected contaminants
GM130
Characterization: Lipid analysis
Yes
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
144.4
EV concentration
Yes
EM
EM-type
Cryo-EM
Image type
Close-up
EV210076 6/6 Rattus norvegicus Urine Other/ EVTrap Hinzman CP 2022 63%

Study summary

Full title
All authors
Hinzman CP, Jayatilake M, Bansal S, Fish BL, Li Y, Zhang Y, Bansal S, Girgis M, Iliuk A, Xu X, Fernandez JA, Griffin JH, Ballew EA, Unger K, Boerma M, Medhora M, Cheema AK
Journal
J Transl Med
Abstract
Urinary extracellular vesicles (EVs) are a source of biomarkers with broad potential applications ac (show more...)Urinary extracellular vesicles (EVs) are a source of biomarkers with broad potential applications across clinical research, including monitoring radiation exposure. A key limitation to their implementation is minimal standardization in EV isolation and analytical methods. Further, most urinary EV isolation protocols necessitate large volumes of sample. This study aimed to compare and optimize isolation and analytical methods for EVs from small volumes of urine. (hide)
EV-METRIC
63% (92nd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Urine
Sample origin
13 Gy ionizing radiation
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Commercial method
Protein markers
EV: TSG101/ CD63/ CD81/ ANXA5/ Alix/ Flotillin1/ EpCam
non-EV: GM130
Proteomics
no
Show all info
Study aim
New methodological development/Biomarker/Identification of content (omics approaches)
Sample
Species
Rattus norvegicus
Sample Type
Urine
Separation Method
Commercial kit
Other/ EVTrap
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
Flotillin1/ Alix/ EpCam/ ANXA5/ TSG101/ CD63/ CD81
Detected contaminants
GM130
Characterization: Lipid analysis
Yes
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
125.2
EV concentration
Yes
EM
EM-type
Cryo-EM
Image type
Close-up
EV220126 1/3 Sarcophilus harrisii Serum (d)(U)C
UF
qEV
Espejo C 2022 57%

Study summary

Full title
All authors
Espejo C, Wilson R, Pye RJ, Ratcliffe JC, Ruiz-Aravena M, Willms E, Wolfe BW, Hamede R, Hill AF, Jones ME, Woods GM, Lyons AB
Journal
Front Immunol
Abstract
The identification of practical early diagnostic biomarkers is a cornerstone of improved prevention (show more...)The identification of practical early diagnostic biomarkers is a cornerstone of improved prevention and treatment of cancers. Such a case is devil facial tumor disease (DFTD), a highly lethal transmissible cancer afflicting virtually an entire species, the Tasmanian devil (). Despite a latent period that can exceed one year, to date DFTD diagnosis requires visual identification of tumor lesions. To enable earlier diagnosis, which is essential for the implementation of effective conservation strategies, we analyzed the extracellular vesicle (EV) proteome of 87 Tasmanian devil serum samples using data-independent acquisition mass spectrometry approaches. The antimicrobial peptide cathelicidin-3 (CATH3), released by innate immune cells, was enriched in serum EV samples of both devils with clinical DFTD (87.9% sensitivity and 94.1% specificity) and devils with latent infection (i.e., collected while overtly healthy, but 3-6 months before subsequent DFTD diagnosis/ 93.8% sensitivity and 94.1% specificity). Although high expression of antimicrobial peptides has been mostly related to inflammatory diseases, our results suggest that they can be also used as accurate cancer biomarkers, suggesting a mechanistic role in tumorous processes. This EV-based approach to biomarker discovery is directly applicable to improving understanding and diagnosis of a broad range of diseases in other species, and these findings directly enhance the capacity of conservation strategies to ensure the viability of the imperiled Tasmanian devil population. (hide)
EV-METRIC
57% (93rd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Serum
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Ultrafiltration
qEV
Protein markers
EV: None
non-EV: Albumin/ Lipoproteins
Proteomics
yes
Show all info
Study aim
Biomarker/Identification of content (omics approaches)
Sample
Species
Sarcophilus harrisii
Sample Type
Serum
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Pelleting performed
No
Ultra filtration
Cut-off size (kDa)
100
Membrane type
Regenerated cellulose
Commercial kit
qEV
Other
Name other separation method
qEV
Characterization: Protein analysis
Protein Concentration Method
Fluorometric assay
Protein Yield (µg)
per milliliter of starting sample
Proteomics database
ProteomeXchange Consortium via
Detected contaminants
Albumin/ Lipoproteins
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
5 - 745
EV concentration
Yes
Particle yield
particles per milliliter of starting sample: 4.68E+10
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
EV220126 2/3 Sarcophilus harrisii Serum (d)(U)C
UF
qEV
Espejo C 2022 57%

Study summary

Full title
All authors
Espejo C, Wilson R, Pye RJ, Ratcliffe JC, Ruiz-Aravena M, Willms E, Wolfe BW, Hamede R, Hill AF, Jones ME, Woods GM, Lyons AB
Journal
Front Immunol
Abstract
The identification of practical early diagnostic biomarkers is a cornerstone of improved prevention (show more...)The identification of practical early diagnostic biomarkers is a cornerstone of improved prevention and treatment of cancers. Such a case is devil facial tumor disease (DFTD), a highly lethal transmissible cancer afflicting virtually an entire species, the Tasmanian devil (). Despite a latent period that can exceed one year, to date DFTD diagnosis requires visual identification of tumor lesions. To enable earlier diagnosis, which is essential for the implementation of effective conservation strategies, we analyzed the extracellular vesicle (EV) proteome of 87 Tasmanian devil serum samples using data-independent acquisition mass spectrometry approaches. The antimicrobial peptide cathelicidin-3 (CATH3), released by innate immune cells, was enriched in serum EV samples of both devils with clinical DFTD (87.9% sensitivity and 94.1% specificity) and devils with latent infection (i.e., collected while overtly healthy, but 3-6 months before subsequent DFTD diagnosis/ 93.8% sensitivity and 94.1% specificity). Although high expression of antimicrobial peptides has been mostly related to inflammatory diseases, our results suggest that they can be also used as accurate cancer biomarkers, suggesting a mechanistic role in tumorous processes. This EV-based approach to biomarker discovery is directly applicable to improving understanding and diagnosis of a broad range of diseases in other species, and these findings directly enhance the capacity of conservation strategies to ensure the viability of the imperiled Tasmanian devil population. (hide)
EV-METRIC
57% (93rd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Serum
Sample origin
Clinically diagnosed overt devil facial tumour disease
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Ultrafiltration
qEV
Protein markers
EV: None
non-EV: Albumin/ Lipoproteins
Proteomics
yes
Show all info
Study aim
Biomarker/Identification of content (omics approaches)
Sample
Species
Sarcophilus harrisii
Sample Type
Serum
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Pelleting performed
No
Ultra filtration
Cut-off size (kDa)
100
Membrane type
Regenerated cellulose
Commercial kit
qEV
Other
Name other separation method
qEV
Characterization: Protein analysis
Protein Concentration Method
Fluorometric assay
Protein Yield (µg)
per milliliter of starting sample
Proteomics database
ProteomeXchange Consortium via
Detected contaminants
Albumin/ Lipoproteins
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
5 - 725
EV concentration
Yes
Particle yield
particles per milliliter of starting sample: 6.08E+10
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
EV220126 3/3 Sarcophilus harrisii Serum (d)(U)C
UF
qEV
Espejo C 2022 57%

Study summary

Full title
All authors
Espejo C, Wilson R, Pye RJ, Ratcliffe JC, Ruiz-Aravena M, Willms E, Wolfe BW, Hamede R, Hill AF, Jones ME, Woods GM, Lyons AB
Journal
Front Immunol
Abstract
The identification of practical early diagnostic biomarkers is a cornerstone of improved prevention (show more...)The identification of practical early diagnostic biomarkers is a cornerstone of improved prevention and treatment of cancers. Such a case is devil facial tumor disease (DFTD), a highly lethal transmissible cancer afflicting virtually an entire species, the Tasmanian devil (). Despite a latent period that can exceed one year, to date DFTD diagnosis requires visual identification of tumor lesions. To enable earlier diagnosis, which is essential for the implementation of effective conservation strategies, we analyzed the extracellular vesicle (EV) proteome of 87 Tasmanian devil serum samples using data-independent acquisition mass spectrometry approaches. The antimicrobial peptide cathelicidin-3 (CATH3), released by innate immune cells, was enriched in serum EV samples of both devils with clinical DFTD (87.9% sensitivity and 94.1% specificity) and devils with latent infection (i.e., collected while overtly healthy, but 3-6 months before subsequent DFTD diagnosis/ 93.8% sensitivity and 94.1% specificity). Although high expression of antimicrobial peptides has been mostly related to inflammatory diseases, our results suggest that they can be also used as accurate cancer biomarkers, suggesting a mechanistic role in tumorous processes. This EV-based approach to biomarker discovery is directly applicable to improving understanding and diagnosis of a broad range of diseases in other species, and these findings directly enhance the capacity of conservation strategies to ensure the viability of the imperiled Tasmanian devil population. (hide)
EV-METRIC
57% (93rd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Serum
Sample origin
Latent devil facial tumour disease
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Ultrafiltration
qEV
Protein markers
EV: None
non-EV: Albumin/ Lipoproteins
Proteomics
yes
Show all info
Study aim
Biomarker/Identification of content (omics approaches)
Sample
Species
Sarcophilus harrisii
Sample Type
Serum
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Pelleting performed
No
Ultra filtration
Cut-off size (kDa)
100
Membrane type
Regenerated cellulose
Commercial kit
qEV
Other
Name other separation method
qEV
Characterization: Protein analysis
Protein Concentration Method
Fluorometric assay
Protein Yield (µg)
per milliliter of starting sample
Proteomics database
ProteomeXchange Consortium via
Detected contaminants
Albumin/ Lipoproteins
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
15 - 745
EV concentration
Yes
Particle yield
particles per milliliter of starting sample: 2.24E+10
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
EV220089 4/14 Homo sapiens HeLa-R19 cells (d)(U)C
DG
Susanne G. van der Grein 2022 57%

Study summary

Full title
All authors
Susanne G. van der Grein, Kyra A. Y. Defourny, Huib H. Rabouw, Soenita S. Goerdayal, Martijn J. C. van Herwijnen, Richard W. Wubbolts, Maarten Altelaar, Frank J. M. van Kuppeveld & Esther N. M. Nolte-‘t Hoen
Journal
Nature communications
Abstract
Naked viruses can escape host cells before the induction of lysis via release in extracellular vesic (show more...)Naked viruses can escape host cells before the induction of lysis via release in extracellular vesicles (EVs). These nanosized EVs cloak the secreted virus particles in a host-derived membrane, which alters virus-host interactions that affect infection efficiency and antiviral immunity. Currently, little is known about the viral and host factors regulating this form of virus release. Here, we assessed the role of the encephalomyocarditis virus (EMCV) Leader protein, a ‘viral security protein’ that subverts the host antiviral response. EV release upon infection with wildtype virus or a Leader-deficient mutant was characterized at the single particle level using high-resolution flow cytometry. Inactivation of the Leader abolished EV induction during infection and strongly reduced EV-enclosed virus release. We demonstrate that the Leader promotes the release of virions within EVs by stimulating a secretory arm of autophagy. This newly discovered role of the EMCV Leader adds to the variety of mechanisms via which this protein affects virus-host interactions. Moreover, these data provide first evidence for a crucial role of a non-structural viral protein in the non-lytic release of picornaviruses via packaging in EVs. (hide)
EV-METRIC
57% (92nd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Density gradient
Protein markers
EV: None
non-EV: None
Proteomics
yes
EV density (g/ml)
1,10-1,04
Show all info
Study aim
Biogenesis/cargo sorting
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
HeLa-R19 cells
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
overnight (16h) at >=100,000g
Cell viability (%)
90
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
65
Pelleting: rotor type
SW 40 Ti
Pelleting: speed (g)
100,000
Density gradient
Type
Continuous
Lowest density fraction
5%
Highest density fraction
45%
Total gradient volume, incl. sample (mL)
11,3
Sample volume (mL)
0,3
Orientation
Bottom-up
Rotor type
SW 40 Ti
Speed (g)
192,000
Duration (min)
960
Fraction volume (mL)
1
Fraction processing
None
Characterization: Protein analysis
Protein Concentration Method
Not determined
Characterization: Lipid analysis
No
Characterization: Particle analysis
Particle analysis: flow cytometry
Flow cytometer type
In house modified BD influx jet in air sorter
Hardware adjustment
Please refer to: van der Vlist EJ, Nolte't Hoen EN, Stoorvogel W, Arkesteijn GJ, Wauben MH. Fluorescent labeling of nano-sized vesicles released by cells and subsequent quantitative and qualitative analysis by high-resolution flow cytometry. Nat Protocol 2012/ 7(7):1311-1326.
Calibration bead size
0,1 & 0,2
EV concentration
Yes
EV220089 8/14 Homo sapiens HeLa-R19 cells (d)(U)C
DG
Susanne G. van der Grein 2022 57%

Study summary

Full title
All authors
Susanne G. van der Grein, Kyra A. Y. Defourny, Huib H. Rabouw, Soenita S. Goerdayal, Martijn J. C. van Herwijnen, Richard W. Wubbolts, Maarten Altelaar, Frank J. M. van Kuppeveld & Esther N. M. Nolte-‘t Hoen
Journal
Nature communications
Abstract
Naked viruses can escape host cells before the induction of lysis via release in extracellular vesic (show more...)Naked viruses can escape host cells before the induction of lysis via release in extracellular vesicles (EVs). These nanosized EVs cloak the secreted virus particles in a host-derived membrane, which alters virus-host interactions that affect infection efficiency and antiviral immunity. Currently, little is known about the viral and host factors regulating this form of virus release. Here, we assessed the role of the encephalomyocarditis virus (EMCV) Leader protein, a ‘viral security protein’ that subverts the host antiviral response. EV release upon infection with wildtype virus or a Leader-deficient mutant was characterized at the single particle level using high-resolution flow cytometry. Inactivation of the Leader abolished EV induction during infection and strongly reduced EV-enclosed virus release. We demonstrate that the Leader promotes the release of virions within EVs by stimulating a secretory arm of autophagy. This newly discovered role of the EMCV Leader adds to the variety of mechanisms via which this protein affects virus-host interactions. Moreover, these data provide first evidence for a crucial role of a non-structural viral protein in the non-lytic release of picornaviruses via packaging in EVs. (hide)
EV-METRIC
57% (92nd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
EMCV-Wt virus infection
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Density gradient
Protein markers
EV: LC3
non-EV: None
Proteomics
yes
EV density (g/ml)
1,10-1,04
Show all info
Study aim
Biogenesis/cargo sorting
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
HeLa-R19 cells
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
overnight (16h) at >=100,000g
Cell viability (%)
90
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 10,000 g and 50,000 g
Pelleting performed
Yes
Pelleting: time(min)
30
Pelleting: rotor type
SW 40 Ti
Pelleting: speed (g)
10,000
Density gradient
Type
Continuous
Lowest density fraction
5%
Highest density fraction
45%
Total gradient volume, incl. sample (mL)
11,3
Sample volume (mL)
0,3
Orientation
Bottom-up
Rotor type
SW 40 Ti
Speed (g)
192,000
Duration (min)
960
Fraction volume (mL)
1
Fraction processing
None
Characterization: Protein analysis
Protein Concentration Method
Not determined
Proteomics database
Yes
Characterization: Lipid analysis
No
Characterization: Particle analysis
Particle analysis: flow cytometry
Flow cytometer type
In house modified BD influx jet in air sorter
Hardware adjustment
Please refer to: van der Vlist EJ, Nolte't Hoen EN, Stoorvogel W, Arkesteijn GJ, Wauben MH. Fluorescent labeling of nano-sized vesicles released by cells and subsequent quantitative and qualitative analysis by high-resolution flow cytometry. Nat Protocol 2012/ 7(7):1311-1326.
Calibration bead size
0,1 & 0,2
EV concentration
Yes
Extra information
Mass spec database name will be included at a later stage. EVs were also analyzed for their viral content (based on virus titration).
EV220089 9/14 Homo sapiens HeLa-R19 cells (d)(U)C
DG
Susanne G. van der Grein 2022 57%

Study summary

Full title
All authors
Susanne G. van der Grein, Kyra A. Y. Defourny, Huib H. Rabouw, Soenita S. Goerdayal, Martijn J. C. van Herwijnen, Richard W. Wubbolts, Maarten Altelaar, Frank J. M. van Kuppeveld & Esther N. M. Nolte-‘t Hoen
Journal
Nature communications
Abstract
Naked viruses can escape host cells before the induction of lysis via release in extracellular vesic (show more...)Naked viruses can escape host cells before the induction of lysis via release in extracellular vesicles (EVs). These nanosized EVs cloak the secreted virus particles in a host-derived membrane, which alters virus-host interactions that affect infection efficiency and antiviral immunity. Currently, little is known about the viral and host factors regulating this form of virus release. Here, we assessed the role of the encephalomyocarditis virus (EMCV) Leader protein, a ‘viral security protein’ that subverts the host antiviral response. EV release upon infection with wildtype virus or a Leader-deficient mutant was characterized at the single particle level using high-resolution flow cytometry. Inactivation of the Leader abolished EV induction during infection and strongly reduced EV-enclosed virus release. We demonstrate that the Leader promotes the release of virions within EVs by stimulating a secretory arm of autophagy. This newly discovered role of the EMCV Leader adds to the variety of mechanisms via which this protein affects virus-host interactions. Moreover, these data provide first evidence for a crucial role of a non-structural viral protein in the non-lytic release of picornaviruses via packaging in EVs. (hide)
EV-METRIC
57% (92nd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
EMCV-Wt virus infection
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Density gradient
Protein markers
EV: None
non-EV: None
Proteomics
yes
EV density (g/ml)
1,10-1,04
Show all info
Study aim
Biogenesis/cargo sorting
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
HeLa-R19 cells
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
overnight (16h) at >=100,000g
Cell viability (%)
90
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
65
Pelleting: rotor type
SW 40 Ti
Pelleting: speed (g)
100,000
Density gradient
Type
Continuous
Lowest density fraction
5%
Highest density fraction
45%
Total gradient volume, incl. sample (mL)
11,3
Sample volume (mL)
0,3
Orientation
Bottom-up
Rotor type
SW 40 Ti
Speed (g)
192,000
Duration (min)
960
Fraction volume (mL)
1
Fraction processing
None
Characterization: Protein analysis
Protein Concentration Method
Not determined
Characterization: Lipid analysis
No
Characterization: Particle analysis
Particle analysis: flow cytometry
Flow cytometer type
In house modified BD influx jet in air sorter
Hardware adjustment
Please refer to: van der Vlist EJ, Nolte't Hoen EN, Stoorvogel W, Arkesteijn GJ, Wauben MH. Fluorescent labeling of nano-sized vesicles released by cells and subsequent quantitative and qualitative analysis by high-resolution flow cytometry. Nat Protocol 2012/ 7(7):1311-1326.
Calibration bead size
0,1 & 0,2
EV concentration
Yes
EV220089 13/14 Homo sapiens HeLa-R19 cells (d)(U)C
DG
Susanne G. van der Grein 2022 57%

Study summary

Full title
All authors
Susanne G. van der Grein, Kyra A. Y. Defourny, Huib H. Rabouw, Soenita S. Goerdayal, Martijn J. C. van Herwijnen, Richard W. Wubbolts, Maarten Altelaar, Frank J. M. van Kuppeveld & Esther N. M. Nolte-‘t Hoen
Journal
Nature communications
Abstract
Naked viruses can escape host cells before the induction of lysis via release in extracellular vesic (show more...)Naked viruses can escape host cells before the induction of lysis via release in extracellular vesicles (EVs). These nanosized EVs cloak the secreted virus particles in a host-derived membrane, which alters virus-host interactions that affect infection efficiency and antiviral immunity. Currently, little is known about the viral and host factors regulating this form of virus release. Here, we assessed the role of the encephalomyocarditis virus (EMCV) Leader protein, a ‘viral security protein’ that subverts the host antiviral response. EV release upon infection with wildtype virus or a Leader-deficient mutant was characterized at the single particle level using high-resolution flow cytometry. Inactivation of the Leader abolished EV induction during infection and strongly reduced EV-enclosed virus release. We demonstrate that the Leader promotes the release of virions within EVs by stimulating a secretory arm of autophagy. This newly discovered role of the EMCV Leader adds to the variety of mechanisms via which this protein affects virus-host interactions. Moreover, these data provide first evidence for a crucial role of a non-structural viral protein in the non-lytic release of picornaviruses via packaging in EVs. (hide)
EV-METRIC
57% (92nd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
EMCV-L(Zn) virus infection
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Density gradient
Protein markers
EV: None
non-EV: None
Proteomics
yes
EV density (g/ml)
1,10-1,04
Show all info
Study aim
Biogenesis/cargo sorting
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
HeLa-R19 cells
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
overnight (16h) at >=100,000g
Cell viability (%)
90
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 10,000 g and 50,000 g
Pelleting performed
Yes
Pelleting: time(min)
30
Pelleting: rotor type
SW 40 Ti
Pelleting: speed (g)
10,000
Density gradient
Type
Continuous
Lowest density fraction
5%
Highest density fraction
45%
Total gradient volume, incl. sample (mL)
11,3
Sample volume (mL)
0,3
Orientation
Bottom-up
Rotor type
SW 40 Ti
Speed (g)
192,000
Duration (min)
960
Fraction volume (mL)
1
Fraction processing
None
Characterization: Protein analysis
Protein Concentration Method
Not determined
Proteomics database
Yes
Characterization: Lipid analysis
No
Characterization: Particle analysis
Particle analysis: flow cytometry
Flow cytometer type
In house modified BD influx jet in air sorter
Hardware adjustment
Please refer to: van der Vlist EJ, Nolte't Hoen EN, Stoorvogel W, Arkesteijn GJ, Wauben MH. Fluorescent labeling of nano-sized vesicles released by cells and subsequent quantitative and qualitative analysis by high-resolution flow cytometry. Nat Protocol 2012/ 7(7):1311-1326.
Calibration bead size
0,1 & 0,2
EV concentration
Yes
Extra information
Mass spec database name will be included at a later stage. EVs were also analyzed for their viral content (based on virus titration).
EV220089 14/14 Homo sapiens HeLa-R19 cells (d)(U)C
DG
Susanne G. van der Grein 2022 57%

Study summary

Full title
All authors
Susanne G. van der Grein, Kyra A. Y. Defourny, Huib H. Rabouw, Soenita S. Goerdayal, Martijn J. C. van Herwijnen, Richard W. Wubbolts, Maarten Altelaar, Frank J. M. van Kuppeveld & Esther N. M. Nolte-‘t Hoen
Journal
Nature communications
Abstract
Naked viruses can escape host cells before the induction of lysis via release in extracellular vesic (show more...)Naked viruses can escape host cells before the induction of lysis via release in extracellular vesicles (EVs). These nanosized EVs cloak the secreted virus particles in a host-derived membrane, which alters virus-host interactions that affect infection efficiency and antiviral immunity. Currently, little is known about the viral and host factors regulating this form of virus release. Here, we assessed the role of the encephalomyocarditis virus (EMCV) Leader protein, a ‘viral security protein’ that subverts the host antiviral response. EV release upon infection with wildtype virus or a Leader-deficient mutant was characterized at the single particle level using high-resolution flow cytometry. Inactivation of the Leader abolished EV induction during infection and strongly reduced EV-enclosed virus release. We demonstrate that the Leader promotes the release of virions within EVs by stimulating a secretory arm of autophagy. This newly discovered role of the EMCV Leader adds to the variety of mechanisms via which this protein affects virus-host interactions. Moreover, these data provide first evidence for a crucial role of a non-structural viral protein in the non-lytic release of picornaviruses via packaging in EVs. (hide)
EV-METRIC
57% (92nd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
EMCV-L(Zn) virus infection
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Density gradient
Protein markers
EV: None
non-EV: None
Proteomics
yes
EV density (g/ml)
1,10-1,04
Show all info
Study aim
Biogenesis/cargo sorting
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
HeLa-R19 cells
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
overnight (16h) at >=100,000g
Cell viability (%)
90
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
30
Pelleting: rotor type
SW 40 Ti
Pelleting: speed (g)
100,000
Density gradient
Type
Continuous
Lowest density fraction
5%
Highest density fraction
45%
Total gradient volume, incl. sample (mL)
11,3
Sample volume (mL)
0,3
Orientation
Bottom-up
Rotor type
SW 40 Ti
Speed (g)
192,000
Duration (min)
960
Fraction volume (mL)
1
Fraction processing
None
Characterization: Protein analysis
Protein Concentration Method
Not determined
Characterization: Lipid analysis
No
Characterization: Particle analysis
Particle analysis: flow cytometry
Flow cytometer type
In house modified BD influx jet in air sorter
Hardware adjustment
Please refer to: van der Vlist EJ, Nolte't Hoen EN, Stoorvogel W, Arkesteijn GJ, Wauben MH. Fluorescent labeling of nano-sized vesicles released by cells and subsequent quantitative and qualitative analysis by high-resolution flow cytometry. Nat Protocol 2012/ 7(7):1311-1326.
Calibration bead size
0,1 & 0,2
EV concentration
Yes
EV210214 1/1 Homo sapiens primary neutrophils (d)(U)C
UF
SEC (non-commercial)
Bonifay, Amandine 2022 57%

Study summary

Full title
All authors
Amandine Bonifay, Stéphane Robert, Belinda Champagne, Paul‐Rémi Petit, Aude Eugène, Corinne Chareyre, Anne‐Claire Duchez, Mélanie Vélier, Shirley Fritz, Loris Vallier, Romaric Lacroix, Françoise Dignat‐George
Journal
J Extracell Vesicles
Abstract
Newly recognized polymorphonuclear neutrophil (PMNs) functions include the ability to release subcel (show more...)Newly recognized polymorphonuclear neutrophil (PMNs) functions include the ability to release subcellular mediators such as neutrophil‐derived extracellular vesicles (NDEVs) involved in immune and thrombo‐inflammatory responses. Elevation of their plasmatic level has been reported in a variety of infectious and cardiovascular disorders, but the clinical use of this potential biomarker is hampered by methodological issues. Although flow cytometry (FCM) is currently used to detect NDEVs in the plasma of patients, an extensive characterization of NDEVs has never been done. Moreover, their detection remains challenging because of their small size and low antigen density. Therefore, the objective of the present study was first to establish a surface antigenic signature of NDEVs detectable by FCM and therefore to improve their detection in biological fluids by developing a strategy allowing to overcome their low fluorescent signal and reduce the background noise. By testing a large panel of 54 antibody specificities already reported to be positive on PMNs, we identified a profile of 15 membrane protein markers, including 4 (CD157, CD24, CD65 and CD66c) never described on NDEVs. Among them, CD15, CD66b and CD66c were identified as the most sensitive and specific markers to detect NDEVs by FCM. Using this antigenic signature, we developed a new strategy combining the three best antibodies in a cocktail and reducing the background noise by size exclusion chromatography (SEC). This strategy allowed a significant improvement in NDEVs enumeration in plasma from sepsis patients and made it feasible to efficiently sort NDEVs from COVID‐19 patients. Altogether, this work opens the door to a more valuable measurement of NDEVs as a potential biomarker in clinical practice. A similar strategy could also be applied to improve detection by FCM of other rare subpopulations of EVs generated by tissues with limited access, such as vascular endothelium, cancer cells or placenta. (hide)
EV-METRIC
57% (92nd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
large extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Ultrafiltration
Size-exclusion chromatography (non-commercial)
Protein markers
EV: CD63/ GAPDH/ Integrin-beta3-subunit/ CD15/ CD66b/ CD44/ CD11c
non-EV: Albumin
Proteomics
no
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
primary neutrophils
EV-harvesting Medium
Serum-containing medium
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Pelleting performed
No
Ultra filtration
Cut-off size (kDa)
100
Membrane type
Polyethersulfone (PES)
Size-exclusion chromatography
Total column volume (mL)
10
Sample volume/column (mL)
0.5
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
CD63/ GAPDH/ Integrin-beta3-subunit
Detected contaminants
Albumin
Flow cytometry
Type of Flow cytometry
Cytoflex S
Calibration bead size
0.1 0.16 0.22 0.24 0.3 0.5 0.9
Antibody details provided?
Yes
Detected EV-associated proteins
CD15/ CD66b
Not detected EV-associated proteins
CD44/ CD11c
Characterization: Lipid analysis
No
Characterization: Particle analysis
TRPS
Report type
Median
Reported size (nm)
191
Particle analysis: flow cytometry
Flow cytometer type
Cytoflex S
Hardware adjustment
Calibration bead size
0.1 0.16 0.22 0.24 0.3 0.5 0.9
EV concentration
Yes
EM
EM-type
Transmission-EM
Image type
Close-up
EV220431 4/4 Mus musculus Serum (d)(U)C
IgG separation
Filtration
Desai PP 2022 56%

Study summary

Full title
All authors
Desai PP, Narra K, James JD, Jones HP, Tripathi AK, Vishwanatha JK
Journal
Cancers (Basel)
Abstract
Small extracellular vesicles (sEVs), mainly exosomes, are nanovesicles that shed from the membrane a (show more...)Small extracellular vesicles (sEVs), mainly exosomes, are nanovesicles that shed from the membrane as intraluminal vesicles of the multivesicular bodies, serve as vehicles that carry cargo influential in modulating the tumor microenvironment for the multi-step process of cancer metastasis. Annexin A2 (AnxA2), a calcium(Ca)-dependent phospholipid-binding protein, is among sEV cargoes. sEV-derived AnxA2 (sEV-AnxA2) protein is involved in the process of metastasis in triple-negative breast cancer (TNBC). The objective of the current study is to determine whether sEV-AnxA2 protein and/or mRNA could be a useful biomarkers to predict the responsiveness of chemotherapy in TNBC. Removal of Immunoglobulin G (IgG) from the serum as well as using the System Bioscience's ExoQuick Ultra kit resulted in efficient sEV isolation and detection of sEV-AnxA2 protein and mRNA compared to the ultracentrifugation method. The standardized method was applied to the twenty TNBC patient sera for sEV isolation. High levels of sEV-AnxA2 protein and/or mRNA were associated with stage 3 and above in TNBC. Four patients who responded to neoadjuvant chemotherapy had high expression of AnxA2 protein and/or mRNA in sEVs, while other four who did not respond to chemotherapy had low levels of AnxA2 protein and mRNA in sEVs. Our data suggest that the sEV-AnxA2 protein and mRNA could be a combined predictive biomarker for responsiveness to chemotherapy in aggressive TNBC. (hide)
EV-METRIC
56% (92nd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Serum
Sample origin
Control condition
Focus vesicles
small extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
IgG separation
Filtration
Protein markers
EV: CD9/ TSG101/ Annexin A2
non-EV: Calnexin/ GM130
Proteomics
no
Show all info
Study aim
Technical analysis comparing/optimizing EV-related methods
Sample
Species
Mus musculus
Sample Type
Serum
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 10,000 g and 50,000 g
Pelleting performed
Yes
Pelleting: rotor type
Type 45 Ti 
Pelleting: speed (g)
185000
Filtration steps
0.2 or 0.22 µm
Other
Name other separation method
IgG separation
Selected surface protein(s)
Annexin A2
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
TSG101
Not detected EV-associated proteins
Annexin A2/ CD9
Detected contaminants
Calnexin/ GM130
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mode
Reported size (nm)
97-126
EV concentration
Yes
Particle yield
Not determined
EV210204 3/12 Homo sapiens PANC-1 (d)(U)C
Filtration
Other/ EVTrap
Hinzman CP 2022 56%

Study summary

Full title
All authors
Hinzman CP, Singh B, Bansal S, Li Y, Iliuk A, Girgis M, Herremans KM, Trevino JG, Singh VK, Banerjee PP, Cheema AK
Journal
J Extracell Vesicles
Abstract
Although cancer-derived extracellular vesicles (cEVs) are thought to play a pivotal role in promotin (show more...)Although cancer-derived extracellular vesicles (cEVs) are thought to play a pivotal role in promoting cancer progression events, their precise effect on neighbouring normal cells is unknown. In this study, we investigated the impact of pancreatic cancer ductal adenocarcinoma (PDAC) derived EVs on recipient non-tumourigenic pancreatic normal epithelial cells upon internalization. We demonstrate that cEVs are readily internalized and induce endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) in treated normal pancreatic epithelial cells within 24 h. We further show that PDAC cEVs increase cell proliferation, migration, and invasion and that these changes are regulated at least in part, by the UPR mediator DDIT3. Subsequently, these cells release several inflammatory cytokines. Leveraging a layered multi-omics approach, we analysed EV cargo from a panel of six PDAC and two normal pancreas cell lines, using multiple EV isolation methods. We found that cEVs were enriched for an array of biomolecules which can induce or regulate ER stress and the UPR, including palmitic acid, sphingomyelins, metabolic regulators of tRNA charging and proteins which regulate trafficking and degradation. We further show that palmitic acid, at doses relevant to those found in cEVs, is sufficient to induce ER stress in normal pancreas cells. These results suggest that cEV cargo packaging may be designed to disseminate proliferative and invasive characteristics upon internalization by distant recipient normal cells, hitherto unreported. This study is among the first to highlight a major role for PDAC cEVs to induce stress in treated normal pancreas cells that may modulate a systemic response leading to altered phenotypes. These findings highlight the importance of EVs in mediating disease aetiology and open potential areas of investigation toward understanding the role of cEV lipids in promoting cell transformation in the surrounding microenvironment. (hide)
EV-METRIC
56% (90th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Filtration
Commercial method
Protein markers
EV: TSG101/ CD63/ CD81/ ANXA5/ Alix/ ICAM/ Flotillin1/ EpCAM
non-EV: GM130
Proteomics
yes
Show all info
Study aim
Function/Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
PANC-1
EV-harvesting Medium
Serum free medium
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: rotor type
SW 28
Pelleting: speed (g)
120000
Filtration steps
0.22µm or 0.2µm
Commercial kit
Other/ EVTrap
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
Flotillin1/ Alix/ CD63/ TSG101/ ICAM/ EpCAM/ ANXA5/ CD81
Detected contaminants
GM130
Proteomics database
Yes:
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Not Reported
EV concentration
Yes
EV210204 6/12 Homo sapiens PPCL-68 (d)(U)C
Filtration
Other/ EVTrap
Hinzman CP 2022 56%

Study summary

Full title
All authors
Hinzman CP, Singh B, Bansal S, Li Y, Iliuk A, Girgis M, Herremans KM, Trevino JG, Singh VK, Banerjee PP, Cheema AK
Journal
J Extracell Vesicles
Abstract
Although cancer-derived extracellular vesicles (cEVs) are thought to play a pivotal role in promotin (show more...)Although cancer-derived extracellular vesicles (cEVs) are thought to play a pivotal role in promoting cancer progression events, their precise effect on neighbouring normal cells is unknown. In this study, we investigated the impact of pancreatic cancer ductal adenocarcinoma (PDAC) derived EVs on recipient non-tumourigenic pancreatic normal epithelial cells upon internalization. We demonstrate that cEVs are readily internalized and induce endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) in treated normal pancreatic epithelial cells within 24 h. We further show that PDAC cEVs increase cell proliferation, migration, and invasion and that these changes are regulated at least in part, by the UPR mediator DDIT3. Subsequently, these cells release several inflammatory cytokines. Leveraging a layered multi-omics approach, we analysed EV cargo from a panel of six PDAC and two normal pancreas cell lines, using multiple EV isolation methods. We found that cEVs were enriched for an array of biomolecules which can induce or regulate ER stress and the UPR, including palmitic acid, sphingomyelins, metabolic regulators of tRNA charging and proteins which regulate trafficking and degradation. We further show that palmitic acid, at doses relevant to those found in cEVs, is sufficient to induce ER stress in normal pancreas cells. These results suggest that cEV cargo packaging may be designed to disseminate proliferative and invasive characteristics upon internalization by distant recipient normal cells, hitherto unreported. This study is among the first to highlight a major role for PDAC cEVs to induce stress in treated normal pancreas cells that may modulate a systemic response leading to altered phenotypes. These findings highlight the importance of EVs in mediating disease aetiology and open potential areas of investigation toward understanding the role of cEV lipids in promoting cell transformation in the surrounding microenvironment. (hide)
EV-METRIC
56% (90th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Filtration
Commercial method
Protein markers
EV: TSG101/ CD63/ CD81/ ANXA5/ Alix/ ICAM/ Flotillin1/ EpCAM
non-EV: GM130
Proteomics
yes
Show all info
Study aim
Function/Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
PPCL-68
EV-harvesting Medium
Serum free medium
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: rotor type
SW 28
Pelleting: speed (g)
120000
Filtration steps
0.22µm or 0.2µm
Commercial kit
Other/ EVTrap
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
Flotillin1/ Alix/ CD63/ TSG101/ ICAM/ EpCAM/ ANXA5/ CD81
Detected contaminants
GM130
Proteomics database
Yes:
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Not Reported
EV concentration
Yes
EV210204 9/12 Homo sapiens hTERT-HPNE (d)(U)C
Filtration
Other/ EVTrap
Hinzman CP 2022 56%

Study summary

Full title
All authors
Hinzman CP, Singh B, Bansal S, Li Y, Iliuk A, Girgis M, Herremans KM, Trevino JG, Singh VK, Banerjee PP, Cheema AK
Journal
J Extracell Vesicles
Abstract
Although cancer-derived extracellular vesicles (cEVs) are thought to play a pivotal role in promotin (show more...)Although cancer-derived extracellular vesicles (cEVs) are thought to play a pivotal role in promoting cancer progression events, their precise effect on neighbouring normal cells is unknown. In this study, we investigated the impact of pancreatic cancer ductal adenocarcinoma (PDAC) derived EVs on recipient non-tumourigenic pancreatic normal epithelial cells upon internalization. We demonstrate that cEVs are readily internalized and induce endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) in treated normal pancreatic epithelial cells within 24 h. We further show that PDAC cEVs increase cell proliferation, migration, and invasion and that these changes are regulated at least in part, by the UPR mediator DDIT3. Subsequently, these cells release several inflammatory cytokines. Leveraging a layered multi-omics approach, we analysed EV cargo from a panel of six PDAC and two normal pancreas cell lines, using multiple EV isolation methods. We found that cEVs were enriched for an array of biomolecules which can induce or regulate ER stress and the UPR, including palmitic acid, sphingomyelins, metabolic regulators of tRNA charging and proteins which regulate trafficking and degradation. We further show that palmitic acid, at doses relevant to those found in cEVs, is sufficient to induce ER stress in normal pancreas cells. These results suggest that cEV cargo packaging may be designed to disseminate proliferative and invasive characteristics upon internalization by distant recipient normal cells, hitherto unreported. This study is among the first to highlight a major role for PDAC cEVs to induce stress in treated normal pancreas cells that may modulate a systemic response leading to altered phenotypes. These findings highlight the importance of EVs in mediating disease aetiology and open potential areas of investigation toward understanding the role of cEV lipids in promoting cell transformation in the surrounding microenvironment. (hide)
EV-METRIC
56% (90th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Filtration
Commercial method
Protein markers
EV: TSG101/ CD63/ CD81/ ANXA5/ Alix/ ICAM/ Flotillin1/ EpCAM
non-EV: GM130
Proteomics
yes
Show all info
Study aim
Function/Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
hTERT-HPNE
EV-harvesting Medium
Serum free medium
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: rotor type
SW 28
Pelleting: speed (g)
120000
Filtration steps
0.22µm or 0.2µm
Commercial kit
Other/ EVTrap
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
Flotillin1/ Alix/ CD63/ TSG101/ ICAM/ EpCAM/ ANXA5/ CD81
Detected contaminants
GM130
Proteomics database
Yes:
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Not Reported
EV concentration
Yes
EV210204 12/12 Homo sapiens HPDE-H6c7 (d)(U)C
Filtration
Other/ EVTrap
Hinzman CP 2022 56%

Study summary

Full title
All authors
Hinzman CP, Singh B, Bansal S, Li Y, Iliuk A, Girgis M, Herremans KM, Trevino JG, Singh VK, Banerjee PP, Cheema AK
Journal
J Extracell Vesicles
Abstract
Although cancer-derived extracellular vesicles (cEVs) are thought to play a pivotal role in promotin (show more...)Although cancer-derived extracellular vesicles (cEVs) are thought to play a pivotal role in promoting cancer progression events, their precise effect on neighbouring normal cells is unknown. In this study, we investigated the impact of pancreatic cancer ductal adenocarcinoma (PDAC) derived EVs on recipient non-tumourigenic pancreatic normal epithelial cells upon internalization. We demonstrate that cEVs are readily internalized and induce endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) in treated normal pancreatic epithelial cells within 24 h. We further show that PDAC cEVs increase cell proliferation, migration, and invasion and that these changes are regulated at least in part, by the UPR mediator DDIT3. Subsequently, these cells release several inflammatory cytokines. Leveraging a layered multi-omics approach, we analysed EV cargo from a panel of six PDAC and two normal pancreas cell lines, using multiple EV isolation methods. We found that cEVs were enriched for an array of biomolecules which can induce or regulate ER stress and the UPR, including palmitic acid, sphingomyelins, metabolic regulators of tRNA charging and proteins which regulate trafficking and degradation. We further show that palmitic acid, at doses relevant to those found in cEVs, is sufficient to induce ER stress in normal pancreas cells. These results suggest that cEV cargo packaging may be designed to disseminate proliferative and invasive characteristics upon internalization by distant recipient normal cells, hitherto unreported. This study is among the first to highlight a major role for PDAC cEVs to induce stress in treated normal pancreas cells that may modulate a systemic response leading to altered phenotypes. These findings highlight the importance of EVs in mediating disease aetiology and open potential areas of investigation toward understanding the role of cEV lipids in promoting cell transformation in the surrounding microenvironment. (hide)
EV-METRIC
56% (90th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Filtration
Commercial method
Protein markers
EV: TSG101/ CD63/ CD81/ ANXA5/ Alix/ ICAM/ Flotillin1/ EpCAM
non-EV: GM130
Proteomics
yes
Show all info
Study aim
Function/Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
HPDE-H6c7
EV-harvesting Medium
Serum free medium
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: rotor type
SW 28
Pelleting: speed (g)
120000
Filtration steps
0.22µm or 0.2µm
Commercial kit
Other/ EVTrap
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
Flotillin1/ Alix/ CD63/ TSG101/ ICAM/ EpCAM/ ANXA5/ CD81
Detected contaminants
GM130
Proteomics database
Yes:
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Not Reported
EV concentration
Yes
EV220307 3/3 Homo sapiens CENH (d)(U)C Berry F 2022 56%

Study summary

Full title
All authors
Berry F, Morin-Dewaele M, Majidipur A, Jamet T, Bartier S, Ignjatovic E, Toniutti D, Gaspar Lopes J, Soyeux-Porte P, Maillé P, Saldana C, Brillet R, Ahnou N, Softic L, Couturaud B, Huet É, Ahmed-Belkacem A, Fourati S, Louis B, Coste A, Béquignon É, de la Taille A, Destouches D, Vacherot F, Pawlotsky JM, Firlej V, Bruscella P
Journal
J Extracell Vesicles
Abstract
Small Extracellular Vesicles (sEVs) are 50-200 nm in diameter vesicles delimited by a lipid bilaye (show more...)Small Extracellular Vesicles (sEVs) are 50-200 nm in diameter vesicles delimited by a lipid bilayer, formed within the endosomal network or derived from the plasma membrane. They are secreted in various biological fluids, including airway nasal mucus. The goal of this work was to understand the role of sEVs present in the mucus (mu-sEVs) produced by human nasal epithelial cells (HNECs) in SARS-CoV-2 infection. We show that uninfected HNECs produce mu-sEVs containing SARS-CoV-2 receptor ACE2 and activated protease TMPRSS2. mu-sEVs cleave prefusion viral Spike proteins at the S1/S2 boundary, resulting in higher proportions of prefusion S proteins exposing their receptor binding domain in an 'open' conformation, thereby facilitating receptor binding at the cell surface. We show that the role of nasal mu-sEVs is to complete prefusion Spike priming performed by intracellular furin during viral egress from infected cells. This effect is mediated by vesicular TMPRSS2 activity, rendering SARS-CoV-2 virions prone to entry into target cells using the 'early', TMPRSS2-dependent pathway instead of the 'late', cathepsin-dependent route. These results indicate that prefusion Spike priming by mu-sEVs in the nasal cavity plays a role in viral tropism. They also show that nasal mucus does not protect from SARS-CoV-2 infection, but instead facilitates it. (hide)
EV-METRIC
56% (90th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Protein markers
EV: Alix/ CD9/ TSG101/ CD81/ ACE2/ TMPRSS2
non-EV: Calreticulin/ cytochrome C
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
CENH
Cell viability (%)
100
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 50,000 g and 100,000 g
Pelleting performed
Yes
Pelleting: rotor type
Type 90 Ti
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
1
Wash: time (min)
90
Wash: Rotor Type
Type 90 Ti
Wash: speed (g)
100000
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Antibody details provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
Alix/ CD9/ TSG101/ ACE2/ TMPRSS2
Not detected EV-associated proteins
CD81
Not detected contaminants
Calreticulin/ cytochrome C
Characterization: Lipid analysis
No
Characterization: Particle analysis
TRPS
Report type
Mean
Reported size (nm)
156
EV concentration
Yes
Particle yield
yes, as number of particles per insert: 3.30E+10
EM
EM-type
Transmission-EM
Image type
Wide-field
EV220119 3/14 Schistosoma mansoni whole parasite culture (d)(U)C
DG
Kuipers, Marije 2022 56%

Study summary

Full title
All authors
Marije E Kuipers, Roman I Koning, Erik Bos, Cornelis H Hokke, Hermelijn H Smits, Esther N M Nolte-'t Hoen
Journal
J immunol Res
Abstract
In the past decade, the interest in helminth-derived extracellular vesicles (EVs) increased owing to (show more...)In the past decade, the interest in helminth-derived extracellular vesicles (EVs) increased owing to their role in pathogen-host communication. However, the availability of EVs from these parasitic worms is often limited due to the restricted occurrence and culturing possibilities of these organisms. Schistosoma mansoni is one of several helminths that have been shown to release EVs affecting the immune response of their host. Further investigation of mechanisms underlying these EV-induced effects warrants separation of EVs from other components of the helminth excretory/secretory products. However, isolation of high-purity EVs often come to the expense of reduced EV yield. We therefore aimed to develop an optimized protocol for isolation of EVs from S. mansoni schistosomula and adult worms with respect to purity, concentration, and yield. We tested the use of small (1.7 ml) iodixanol density gradients and demonstrated that this enabled western blot-based analysis of the EV marker protein tetraspanin-2 (TSP-2) in gradient fractions without additional concentration steps. Moreover, the concentration and yield of EVs obtained with small iodixanol gradients were higher compared to medium-sized (4.3 ml) or conventional large-sized (12 ml) gradients. Additionally, we provide evidence that iodixanol is preferred over sucrose as medium for the small density gradients, because EVs in iodixanol gradients reached equilibrium much faster (2 hours) and iodixanol but not sucrose was suitable for purification of schistosomula EVs. Finally, we demonstrate that the small iodixanol gradients were able to separate adult worm EVs from non-EV contaminants such as the blood digestion product hemozoin. Our optimized small iodixanol density gradient allows to simultaneously separate and concentrate EVs while reducing handling time and EV loss and can be applied for EVs from helminths and other limited EV sources. (hide)
EV-METRIC
56% (59th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
whole parasite culture
Sample origin
adult worm
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Density gradient
Protein markers
EV: S. mansoni TSP-2
non-EV: None
Proteomics
no
EV density (g/ml)
1.07-1.15
Show all info
Study aim
Technical analysis comparing/optimizing EV-related methods
Sample
Species
Schistosoma mansoni
Sample Type
whole parasite culture
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 50,000 g and 100,000 g
Pelleting performed
Yes
Pelleting: time(min)
65
Pelleting: rotor type
SW 41 Ti
Pelleting: speed (g)
96,808
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
4
Lowest density fraction
10%
Highest density fraction
60% (58,7% with sample)
Total gradient volume, incl. sample (mL)
11.97
Sample volume (mL)
0.07
Orientation
Bottom-up
Rotor type
SW 41 Ti
Speed (g)
169,044
Duration (min)
>960
Fraction volume (mL)
0.997
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
S. mansoni TSP-2
Characterization: Lipid analysis
No
Characterization: Particle analysis
None
EV220119 4/14 Schistosoma mansoni whole parasite culture (d)(U)C
DG
Kuipers, Marije 2022 56%

Study summary

Full title
All authors
Marije E Kuipers, Roman I Koning, Erik Bos, Cornelis H Hokke, Hermelijn H Smits, Esther N M Nolte-'t Hoen
Journal
J immunol Res
Abstract
In the past decade, the interest in helminth-derived extracellular vesicles (EVs) increased owing to (show more...)In the past decade, the interest in helminth-derived extracellular vesicles (EVs) increased owing to their role in pathogen-host communication. However, the availability of EVs from these parasitic worms is often limited due to the restricted occurrence and culturing possibilities of these organisms. Schistosoma mansoni is one of several helminths that have been shown to release EVs affecting the immune response of their host. Further investigation of mechanisms underlying these EV-induced effects warrants separation of EVs from other components of the helminth excretory/secretory products. However, isolation of high-purity EVs often come to the expense of reduced EV yield. We therefore aimed to develop an optimized protocol for isolation of EVs from S. mansoni schistosomula and adult worms with respect to purity, concentration, and yield. We tested the use of small (1.7 ml) iodixanol density gradients and demonstrated that this enabled western blot-based analysis of the EV marker protein tetraspanin-2 (TSP-2) in gradient fractions without additional concentration steps. Moreover, the concentration and yield of EVs obtained with small iodixanol gradients were higher compared to medium-sized (4.3 ml) or conventional large-sized (12 ml) gradients. Additionally, we provide evidence that iodixanol is preferred over sucrose as medium for the small density gradients, because EVs in iodixanol gradients reached equilibrium much faster (2 hours) and iodixanol but not sucrose was suitable for purification of schistosomula EVs. Finally, we demonstrate that the small iodixanol gradients were able to separate adult worm EVs from non-EV contaminants such as the blood digestion product hemozoin. Our optimized small iodixanol density gradient allows to simultaneously separate and concentrate EVs while reducing handling time and EV loss and can be applied for EVs from helminths and other limited EV sources. (hide)
EV-METRIC
56% (59th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
whole parasite culture
Sample origin
adult worm
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Density gradient
Protein markers
EV: S. mansoni TSP-2
non-EV: None
Proteomics
no
EV density (g/ml)
1.07-1.21
Show all info
Study aim
Technical analysis comparing/optimizing EV-related methods
Sample
Species
Schistosoma mansoni
Sample Type
whole parasite culture
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 50,000 g and 100,000 g
Pelleting performed
Yes
Pelleting: time(min)
65
Pelleting: rotor type
SW 41 Ti
Pelleting: speed (g)
96,808
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
4
Lowest density fraction
10%
Highest density fraction
60% (56.4 % with sample)
Total gradient volume, incl. sample (mL)
4.25
Sample volume (mL)
0.07
Orientation
Bottom-up
Rotor type
SW 55 Ti
Speed (g)
169,639
Duration (min)
>960
Fraction volume (mL)
0.354
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
S. mansoni TSP-2
Characterization: Lipid analysis
No
Characterization: Particle analysis
None
EV220119 5/14 Schistosoma mansoni whole parasite culture (d)(U)C
DG
Kuipers, Marije 2022 56%

Study summary

Full title
All authors
Marije E Kuipers, Roman I Koning, Erik Bos, Cornelis H Hokke, Hermelijn H Smits, Esther N M Nolte-'t Hoen
Journal
J immunol Res
Abstract
In the past decade, the interest in helminth-derived extracellular vesicles (EVs) increased owing to (show more...)In the past decade, the interest in helminth-derived extracellular vesicles (EVs) increased owing to their role in pathogen-host communication. However, the availability of EVs from these parasitic worms is often limited due to the restricted occurrence and culturing possibilities of these organisms. Schistosoma mansoni is one of several helminths that have been shown to release EVs affecting the immune response of their host. Further investigation of mechanisms underlying these EV-induced effects warrants separation of EVs from other components of the helminth excretory/secretory products. However, isolation of high-purity EVs often come to the expense of reduced EV yield. We therefore aimed to develop an optimized protocol for isolation of EVs from S. mansoni schistosomula and adult worms with respect to purity, concentration, and yield. We tested the use of small (1.7 ml) iodixanol density gradients and demonstrated that this enabled western blot-based analysis of the EV marker protein tetraspanin-2 (TSP-2) in gradient fractions without additional concentration steps. Moreover, the concentration and yield of EVs obtained with small iodixanol gradients were higher compared to medium-sized (4.3 ml) or conventional large-sized (12 ml) gradients. Additionally, we provide evidence that iodixanol is preferred over sucrose as medium for the small density gradients, because EVs in iodixanol gradients reached equilibrium much faster (2 hours) and iodixanol but not sucrose was suitable for purification of schistosomula EVs. Finally, we demonstrate that the small iodixanol gradients were able to separate adult worm EVs from non-EV contaminants such as the blood digestion product hemozoin. Our optimized small iodixanol density gradient allows to simultaneously separate and concentrate EVs while reducing handling time and EV loss and can be applied for EVs from helminths and other limited EV sources. (hide)
EV-METRIC
56% (59th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
whole parasite culture
Sample origin
adult worm
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Density gradient
Protein markers
EV: S. mansoni TSP-2
non-EV: None
Proteomics
no
EV density (g/ml)
1.07-1.21
Show all info
Study aim
Technical analysis comparing/optimizing EV-related methods
Sample
Species
Schistosoma mansoni
Sample Type
whole parasite culture
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 50,000 g and 100,000 g
Pelleting performed
Yes
Pelleting: time(min)
65
Pelleting: rotor type
SW 41 Ti
Pelleting: speed (g)
96,808
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
4
Lowest density fraction
10%
Highest density fraction
60% (51.8 % with sample)
Total gradient volume, incl. sample (mL)
1.742
Sample volume (mL)
0.07
Orientation
Bottom-up
Rotor type
TLS-55
Speed (g)
166,180
Duration (min)
120
Fraction volume (mL)
0.145
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
S. mansoni TSP-2
Characterization: Lipid analysis
No
Characterization: Particle analysis
EM
EM-type
Cryo-EM
Image type
Wide-field
EV220119 6/14 Schistosoma mansoni whole parasite culture (d)(U)C
DG
Kuipers, Marije 2022 56%

Study summary

Full title
All authors
Marije E Kuipers, Roman I Koning, Erik Bos, Cornelis H Hokke, Hermelijn H Smits, Esther N M Nolte-'t Hoen
Journal
J immunol Res
Abstract
In the past decade, the interest in helminth-derived extracellular vesicles (EVs) increased owing to (show more...)In the past decade, the interest in helminth-derived extracellular vesicles (EVs) increased owing to their role in pathogen-host communication. However, the availability of EVs from these parasitic worms is often limited due to the restricted occurrence and culturing possibilities of these organisms. Schistosoma mansoni is one of several helminths that have been shown to release EVs affecting the immune response of their host. Further investigation of mechanisms underlying these EV-induced effects warrants separation of EVs from other components of the helminth excretory/secretory products. However, isolation of high-purity EVs often come to the expense of reduced EV yield. We therefore aimed to develop an optimized protocol for isolation of EVs from S. mansoni schistosomula and adult worms with respect to purity, concentration, and yield. We tested the use of small (1.7 ml) iodixanol density gradients and demonstrated that this enabled western blot-based analysis of the EV marker protein tetraspanin-2 (TSP-2) in gradient fractions without additional concentration steps. Moreover, the concentration and yield of EVs obtained with small iodixanol gradients were higher compared to medium-sized (4.3 ml) or conventional large-sized (12 ml) gradients. Additionally, we provide evidence that iodixanol is preferred over sucrose as medium for the small density gradients, because EVs in iodixanol gradients reached equilibrium much faster (2 hours) and iodixanol but not sucrose was suitable for purification of schistosomula EVs. Finally, we demonstrate that the small iodixanol gradients were able to separate adult worm EVs from non-EV contaminants such as the blood digestion product hemozoin. Our optimized small iodixanol density gradient allows to simultaneously separate and concentrate EVs while reducing handling time and EV loss and can be applied for EVs from helminths and other limited EV sources. (hide)
EV-METRIC
56% (59th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
whole parasite culture
Sample origin
adult worm
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Density gradient
Protein markers
EV: S. mansoni TSP-2
non-EV: None
Proteomics
no
EV density (g/ml)
1.07-1.19
Show all info
Study aim
Technical analysis comparing/optimizing EV-related methods
Sample
Species
Schistosoma mansoni
Sample Type
whole parasite culture
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 50,000 g and 100,000 g
Pelleting performed
Yes
Pelleting: time(min)
65
Pelleting: rotor type
SW 41 Ti
Pelleting: speed (g)
96,808
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
4
Lowest density fraction
10%
Highest density fraction
60%
Total gradient volume, incl. sample (mL)
1.742
Sample volume (mL)
0.07
Orientation
Top-down
Rotor type
TLS-55
Speed (g)
166,180
Duration (min)
120
Fraction volume (mL)
0.145
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
S. mansoni TSP-2
Characterization: Lipid analysis
No
Characterization: Particle analysis
None
EV220119 7/14 Schistosoma mansoni whole parasite culture (d)(U)C
DG
Kuipers, Marije 2022 56%

Study summary

Full title
All authors
Marije E Kuipers, Roman I Koning, Erik Bos, Cornelis H Hokke, Hermelijn H Smits, Esther N M Nolte-'t Hoen
Journal
J immunol Res
Abstract
In the past decade, the interest in helminth-derived extracellular vesicles (EVs) increased owing to (show more...)In the past decade, the interest in helminth-derived extracellular vesicles (EVs) increased owing to their role in pathogen-host communication. However, the availability of EVs from these parasitic worms is often limited due to the restricted occurrence and culturing possibilities of these organisms. Schistosoma mansoni is one of several helminths that have been shown to release EVs affecting the immune response of their host. Further investigation of mechanisms underlying these EV-induced effects warrants separation of EVs from other components of the helminth excretory/secretory products. However, isolation of high-purity EVs often come to the expense of reduced EV yield. We therefore aimed to develop an optimized protocol for isolation of EVs from S. mansoni schistosomula and adult worms with respect to purity, concentration, and yield. We tested the use of small (1.7 ml) iodixanol density gradients and demonstrated that this enabled western blot-based analysis of the EV marker protein tetraspanin-2 (TSP-2) in gradient fractions without additional concentration steps. Moreover, the concentration and yield of EVs obtained with small iodixanol gradients were higher compared to medium-sized (4.3 ml) or conventional large-sized (12 ml) gradients. Additionally, we provide evidence that iodixanol is preferred over sucrose as medium for the small density gradients, because EVs in iodixanol gradients reached equilibrium much faster (2 hours) and iodixanol but not sucrose was suitable for purification of schistosomula EVs. Finally, we demonstrate that the small iodixanol gradients were able to separate adult worm EVs from non-EV contaminants such as the blood digestion product hemozoin. Our optimized small iodixanol density gradient allows to simultaneously separate and concentrate EVs while reducing handling time and EV loss and can be applied for EVs from helminths and other limited EV sources. (hide)
EV-METRIC
56% (59th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
whole parasite culture
Sample origin
adult worm
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Density gradient
Protein markers
EV: S. mansoni TSP-2
non-EV: None
Proteomics
no
EV density (g/ml)
1.25-1.11
Show all info
Study aim
Technical analysis comparing/optimizing EV-related methods
Sample
Species
Schistosoma mansoni
Sample Type
whole parasite culture
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 50,000 g and 100,000 g
Pelleting performed
Yes
Pelleting: time(min)
65
Pelleting: rotor type
SW 41 Ti
Pelleting: speed (g)
96,808
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
15
Lowest density fraction
0.4M
Highest density fraction
2.5M (2.05M with sample)
Total gradient volume, incl. sample (mL)
1.86
Sample volume (mL)
0.07
Orientation
Bottom-up
Rotor type
TLS-55
Speed (g)
166,180
Duration (min)
120
Fraction volume (mL)
0.155
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
S. mansoni TSP-2
Characterization: Lipid analysis
No
Characterization: Particle analysis
None
EV220119 8/14 Schistosoma mansoni whole parasite culture (d)(U)C
DG
Kuipers, Marije 2022 56%

Study summary

Full title
All authors
Marije E Kuipers, Roman I Koning, Erik Bos, Cornelis H Hokke, Hermelijn H Smits, Esther N M Nolte-'t Hoen
Journal
J immunol Res
Abstract
In the past decade, the interest in helminth-derived extracellular vesicles (EVs) increased owing to (show more...)In the past decade, the interest in helminth-derived extracellular vesicles (EVs) increased owing to their role in pathogen-host communication. However, the availability of EVs from these parasitic worms is often limited due to the restricted occurrence and culturing possibilities of these organisms. Schistosoma mansoni is one of several helminths that have been shown to release EVs affecting the immune response of their host. Further investigation of mechanisms underlying these EV-induced effects warrants separation of EVs from other components of the helminth excretory/secretory products. However, isolation of high-purity EVs often come to the expense of reduced EV yield. We therefore aimed to develop an optimized protocol for isolation of EVs from S. mansoni schistosomula and adult worms with respect to purity, concentration, and yield. We tested the use of small (1.7 ml) iodixanol density gradients and demonstrated that this enabled western blot-based analysis of the EV marker protein tetraspanin-2 (TSP-2) in gradient fractions without additional concentration steps. Moreover, the concentration and yield of EVs obtained with small iodixanol gradients were higher compared to medium-sized (4.3 ml) or conventional large-sized (12 ml) gradients. Additionally, we provide evidence that iodixanol is preferred over sucrose as medium for the small density gradients, because EVs in iodixanol gradients reached equilibrium much faster (2 hours) and iodixanol but not sucrose was suitable for purification of schistosomula EVs. Finally, we demonstrate that the small iodixanol gradients were able to separate adult worm EVs from non-EV contaminants such as the blood digestion product hemozoin. Our optimized small iodixanol density gradient allows to simultaneously separate and concentrate EVs while reducing handling time and EV loss and can be applied for EVs from helminths and other limited EV sources. (hide)
EV-METRIC
56% (59th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
whole parasite culture
Sample origin
adult worm
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Density gradient
Protein markers
EV: S. mansoni TSP-2
non-EV: None
Proteomics
no
EV density (g/ml)
1.20-1.12
Show all info
Study aim
Technical analysis comparing/optimizing EV-related methods
Sample
Species
Schistosoma mansoni
Sample Type
whole parasite culture
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 50,000 g and 100,000 g
Pelleting performed
Yes
Pelleting: time(min)
65
Pelleting: rotor type
SW 41 Ti
Pelleting: speed (g)
96,808
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
15
Lowest density fraction
0.4M
Highest density fraction
2.5M
Total gradient volume, incl. sample (mL)
1.86
Sample volume (mL)
0.07
Orientation
Top-down
Rotor type
TLS-55
Speed (g)
166,180
Duration (min)
120
Fraction volume (mL)
0.155
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
S. mansoni TSP-2
Characterization: Lipid analysis
No
Characterization: Particle analysis
None
EV220119 9/14 Schistosoma mansoni whole parasite culture (d)(U)C
DG
Kuipers, Marije 2022 56%

Study summary

Full title
All authors
Marije E Kuipers, Roman I Koning, Erik Bos, Cornelis H Hokke, Hermelijn H Smits, Esther N M Nolte-'t Hoen
Journal
J immunol Res
Abstract
In the past decade, the interest in helminth-derived extracellular vesicles (EVs) increased owing to (show more...)In the past decade, the interest in helminth-derived extracellular vesicles (EVs) increased owing to their role in pathogen-host communication. However, the availability of EVs from these parasitic worms is often limited due to the restricted occurrence and culturing possibilities of these organisms. Schistosoma mansoni is one of several helminths that have been shown to release EVs affecting the immune response of their host. Further investigation of mechanisms underlying these EV-induced effects warrants separation of EVs from other components of the helminth excretory/secretory products. However, isolation of high-purity EVs often come to the expense of reduced EV yield. We therefore aimed to develop an optimized protocol for isolation of EVs from S. mansoni schistosomula and adult worms with respect to purity, concentration, and yield. We tested the use of small (1.7 ml) iodixanol density gradients and demonstrated that this enabled western blot-based analysis of the EV marker protein tetraspanin-2 (TSP-2) in gradient fractions without additional concentration steps. Moreover, the concentration and yield of EVs obtained with small iodixanol gradients were higher compared to medium-sized (4.3 ml) or conventional large-sized (12 ml) gradients. Additionally, we provide evidence that iodixanol is preferred over sucrose as medium for the small density gradients, because EVs in iodixanol gradients reached equilibrium much faster (2 hours) and iodixanol but not sucrose was suitable for purification of schistosomula EVs. Finally, we demonstrate that the small iodixanol gradients were able to separate adult worm EVs from non-EV contaminants such as the blood digestion product hemozoin. Our optimized small iodixanol density gradient allows to simultaneously separate and concentrate EVs while reducing handling time and EV loss and can be applied for EVs from helminths and other limited EV sources. (hide)
EV-METRIC
56% (59th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
whole parasite culture
Sample origin
adult worm
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Density gradient
Protein markers
EV: S. mansoni TSP-2
non-EV: None
Proteomics
no
EV density (g/ml)
1.17-1.12
Show all info
Study aim
Technical analysis comparing/optimizing EV-related methods
Sample
Species
Schistosoma mansoni
Sample Type
whole parasite culture
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 50,000 g and 100,000 g
Pelleting performed
Yes
Pelleting: time(min)
65
Pelleting: rotor type
SW 41 Ti
Pelleting: speed (g)
96,808
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
15
Lowest density fraction
0.4M
Highest density fraction
2.5M (2.05M with sample)
Total gradient volume, incl. sample (mL)
1.86
Sample volume (mL)
0.07
Orientation
Bottom-up
Rotor type
TLS-55
Speed (g)
166,180
Duration (min)
810
Fraction volume (mL)
0.155
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
S. mansoni TSP-2
Characterization: Lipid analysis
No
Characterization: Particle analysis
None
EV220119 11/14 Schistosoma mansoni whole parasite culture (d)(U)C
DG
Kuipers, Marije 2022 56%

Study summary

Full title
All authors
Marije E Kuipers, Roman I Koning, Erik Bos, Cornelis H Hokke, Hermelijn H Smits, Esther N M Nolte-'t Hoen
Journal
J immunol Res
Abstract
In the past decade, the interest in helminth-derived extracellular vesicles (EVs) increased owing to (show more...)In the past decade, the interest in helminth-derived extracellular vesicles (EVs) increased owing to their role in pathogen-host communication. However, the availability of EVs from these parasitic worms is often limited due to the restricted occurrence and culturing possibilities of these organisms. Schistosoma mansoni is one of several helminths that have been shown to release EVs affecting the immune response of their host. Further investigation of mechanisms underlying these EV-induced effects warrants separation of EVs from other components of the helminth excretory/secretory products. However, isolation of high-purity EVs often come to the expense of reduced EV yield. We therefore aimed to develop an optimized protocol for isolation of EVs from S. mansoni schistosomula and adult worms with respect to purity, concentration, and yield. We tested the use of small (1.7 ml) iodixanol density gradients and demonstrated that this enabled western blot-based analysis of the EV marker protein tetraspanin-2 (TSP-2) in gradient fractions without additional concentration steps. Moreover, the concentration and yield of EVs obtained with small iodixanol gradients were higher compared to medium-sized (4.3 ml) or conventional large-sized (12 ml) gradients. Additionally, we provide evidence that iodixanol is preferred over sucrose as medium for the small density gradients, because EVs in iodixanol gradients reached equilibrium much faster (2 hours) and iodixanol but not sucrose was suitable for purification of schistosomula EVs. Finally, we demonstrate that the small iodixanol gradients were able to separate adult worm EVs from non-EV contaminants such as the blood digestion product hemozoin. Our optimized small iodixanol density gradient allows to simultaneously separate and concentrate EVs while reducing handling time and EV loss and can be applied for EVs from helminths and other limited EV sources. (hide)
EV-METRIC
56% (59th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
whole parasite culture
Sample origin
schistosomula
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Density gradient
Protein markers
EV: S. mansoni TSP-2
non-EV: None
Proteomics
no
EV density (g/ml)
1.07-1.21
Show all info
Study aim
Technical analysis comparing/optimizing EV-related methods
Sample
Species
Schistosoma mansoni
Sample Type
whole parasite culture
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 50,000 g and 100,000 g
Pelleting performed
Yes
Pelleting: time(min)
65
Pelleting: rotor type
SW 41 Ti
Pelleting: speed (g)
96,808
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
4
Lowest density fraction
10%
Highest density fraction
60% (51.8 % with sample)
Total gradient volume, incl. sample (mL)
1.742
Sample volume (mL)
0.07
Orientation
Bottom-up
Rotor type
TLS-55
Speed (g)
166,180
Duration (min)
120
Fraction volume (mL)
0.145
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
S. mansoni TSP-2
Characterization: Lipid analysis
No
Characterization: Particle analysis
None
EV220119 12/14 Schistosoma mansoni whole parasite culture (d)(U)C
DG
Kuipers, Marije 2022 56%

Study summary

Full title
All authors
Marije E Kuipers, Roman I Koning, Erik Bos, Cornelis H Hokke, Hermelijn H Smits, Esther N M Nolte-'t Hoen
Journal
J immunol Res
Abstract
In the past decade, the interest in helminth-derived extracellular vesicles (EVs) increased owing to (show more...)In the past decade, the interest in helminth-derived extracellular vesicles (EVs) increased owing to their role in pathogen-host communication. However, the availability of EVs from these parasitic worms is often limited due to the restricted occurrence and culturing possibilities of these organisms. Schistosoma mansoni is one of several helminths that have been shown to release EVs affecting the immune response of their host. Further investigation of mechanisms underlying these EV-induced effects warrants separation of EVs from other components of the helminth excretory/secretory products. However, isolation of high-purity EVs often come to the expense of reduced EV yield. We therefore aimed to develop an optimized protocol for isolation of EVs from S. mansoni schistosomula and adult worms with respect to purity, concentration, and yield. We tested the use of small (1.7 ml) iodixanol density gradients and demonstrated that this enabled western blot-based analysis of the EV marker protein tetraspanin-2 (TSP-2) in gradient fractions without additional concentration steps. Moreover, the concentration and yield of EVs obtained with small iodixanol gradients were higher compared to medium-sized (4.3 ml) or conventional large-sized (12 ml) gradients. Additionally, we provide evidence that iodixanol is preferred over sucrose as medium for the small density gradients, because EVs in iodixanol gradients reached equilibrium much faster (2 hours) and iodixanol but not sucrose was suitable for purification of schistosomula EVs. Finally, we demonstrate that the small iodixanol gradients were able to separate adult worm EVs from non-EV contaminants such as the blood digestion product hemozoin. Our optimized small iodixanol density gradient allows to simultaneously separate and concentrate EVs while reducing handling time and EV loss and can be applied for EVs from helminths and other limited EV sources. (hide)
EV-METRIC
56% (59th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
whole parasite culture
Sample origin
schistosomula
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Density gradient
Protein markers
EV: S. mansoni TSP-2
non-EV: None
Proteomics
no
EV density (g/ml)
1.07-1.19
Show all info
Study aim
Technical analysis comparing/optimizing EV-related methods
Sample
Species
Schistosoma mansoni
Sample Type
whole parasite culture
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 50,000 g and 100,000 g
Pelleting performed
Yes
Pelleting: time(min)
65
Pelleting: rotor type
SW 41 Ti
Pelleting: speed (g)
96,808
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
4
Lowest density fraction
10%
Highest density fraction
60%
Total gradient volume, incl. sample (mL)
1.742
Sample volume (mL)
0.07
Orientation
Top-down
Rotor type
TLS-55
Speed (g)
166,180
Duration (min)
120
Fraction volume (mL)
0.145
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
S. mansoni TSP-2
Characterization: Lipid analysis
No
Characterization: Particle analysis
None
EV220119 13/14 Schistosoma mansoni whole parasite culture (d)(U)C
DG
Kuipers, Marije 2022 56%

Study summary

Full title
All authors
Marije E Kuipers, Roman I Koning, Erik Bos, Cornelis H Hokke, Hermelijn H Smits, Esther N M Nolte-'t Hoen
Journal
J immunol Res
Abstract
In the past decade, the interest in helminth-derived extracellular vesicles (EVs) increased owing to (show more...)In the past decade, the interest in helminth-derived extracellular vesicles (EVs) increased owing to their role in pathogen-host communication. However, the availability of EVs from these parasitic worms is often limited due to the restricted occurrence and culturing possibilities of these organisms. Schistosoma mansoni is one of several helminths that have been shown to release EVs affecting the immune response of their host. Further investigation of mechanisms underlying these EV-induced effects warrants separation of EVs from other components of the helminth excretory/secretory products. However, isolation of high-purity EVs often come to the expense of reduced EV yield. We therefore aimed to develop an optimized protocol for isolation of EVs from S. mansoni schistosomula and adult worms with respect to purity, concentration, and yield. We tested the use of small (1.7 ml) iodixanol density gradients and demonstrated that this enabled western blot-based analysis of the EV marker protein tetraspanin-2 (TSP-2) in gradient fractions without additional concentration steps. Moreover, the concentration and yield of EVs obtained with small iodixanol gradients were higher compared to medium-sized (4.3 ml) or conventional large-sized (12 ml) gradients. Additionally, we provide evidence that iodixanol is preferred over sucrose as medium for the small density gradients, because EVs in iodixanol gradients reached equilibrium much faster (2 hours) and iodixanol but not sucrose was suitable for purification of schistosomula EVs. Finally, we demonstrate that the small iodixanol gradients were able to separate adult worm EVs from non-EV contaminants such as the blood digestion product hemozoin. Our optimized small iodixanol density gradient allows to simultaneously separate and concentrate EVs while reducing handling time and EV loss and can be applied for EVs from helminths and other limited EV sources. (hide)
EV-METRIC
56% (59th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
whole parasite culture
Sample origin
schistosomula
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Density gradient
Protein markers
EV: S. mansoni TSP-2
non-EV: None
Proteomics
no
EV density (g/ml)
1.26-1.25
Show all info
Study aim
Technical analysis comparing/optimizing EV-related methods
Sample
Species
Schistosoma mansoni
Sample Type
whole parasite culture
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 50,000 g and 100,000 g
Pelleting performed
Yes
Pelleting: time(min)
65
Pelleting: rotor type
SW 41 Ti
Pelleting: speed (g)
96,808
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
15
Lowest density fraction
0.4M
Highest density fraction
2.5M (2.05M with sample)
Total gradient volume, incl. sample (mL)
1.86
Sample volume (mL)
0.07
Orientation
Bottom-up
Rotor type
TLS-55
Speed (g)
166,180
Duration (min)
810
Fraction volume (mL)
0.155
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
S. mansoni TSP-2
Characterization: Lipid analysis
No
Characterization: Particle analysis
None
EV220119 14/14 Schistosoma mansoni whole parasite culture (d)(U)C
DG
Kuipers, Marije 2022 56%

Study summary

Full title
All authors
Marije E Kuipers, Roman I Koning, Erik Bos, Cornelis H Hokke, Hermelijn H Smits, Esther N M Nolte-'t Hoen
Journal
J immunol Res
Abstract
In the past decade, the interest in helminth-derived extracellular vesicles (EVs) increased owing to (show more...)In the past decade, the interest in helminth-derived extracellular vesicles (EVs) increased owing to their role in pathogen-host communication. However, the availability of EVs from these parasitic worms is often limited due to the restricted occurrence and culturing possibilities of these organisms. Schistosoma mansoni is one of several helminths that have been shown to release EVs affecting the immune response of their host. Further investigation of mechanisms underlying these EV-induced effects warrants separation of EVs from other components of the helminth excretory/secretory products. However, isolation of high-purity EVs often come to the expense of reduced EV yield. We therefore aimed to develop an optimized protocol for isolation of EVs from S. mansoni schistosomula and adult worms with respect to purity, concentration, and yield. We tested the use of small (1.7 ml) iodixanol density gradients and demonstrated that this enabled western blot-based analysis of the EV marker protein tetraspanin-2 (TSP-2) in gradient fractions without additional concentration steps. Moreover, the concentration and yield of EVs obtained with small iodixanol gradients were higher compared to medium-sized (4.3 ml) or conventional large-sized (12 ml) gradients. Additionally, we provide evidence that iodixanol is preferred over sucrose as medium for the small density gradients, because EVs in iodixanol gradients reached equilibrium much faster (2 hours) and iodixanol but not sucrose was suitable for purification of schistosomula EVs. Finally, we demonstrate that the small iodixanol gradients were able to separate adult worm EVs from non-EV contaminants such as the blood digestion product hemozoin. Our optimized small iodixanol density gradient allows to simultaneously separate and concentrate EVs while reducing handling time and EV loss and can be applied for EVs from helminths and other limited EV sources. (hide)
EV-METRIC
56% (59th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
whole parasite culture
Sample origin
schistosomula
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Density gradient
Protein markers
EV: S. mansoni TSP-2
non-EV: None
Proteomics
no
EV density (g/ml)
1.28-1.21
Show all info
Study aim
Technical analysis comparing/optimizing EV-related methods
Sample
Species
Schistosoma mansoni
Sample Type
whole parasite culture
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 50,000 g and 100,000 g
Pelleting performed
Yes
Pelleting: time(min)
65
Pelleting: rotor type
SW 41 Ti
Pelleting: speed (g)
96,808
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
15
Lowest density fraction
0.4M
Highest density fraction
2.5M
Total gradient volume, incl. sample (mL)
1.86
Sample volume (mL)
0.07
Orientation
Top-down
Rotor type
TLS-55
Speed (g)
166,180
Duration (min)
810
Fraction volume (mL)
0.155
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
S. mansoni TSP-2
Characterization: Lipid analysis
No
Characterization: Particle analysis
None
EV220069 1/11 Homo sapiens MHCC97L (d)(U)C Tey, Sze Kong 2022 56%

Study summary

Full title
All authors
Sze Keong Tey, Samuel Wan Ki Wong, Cherlie Lot Sum Yeung, Jason Ying Ki Li, Xiaowen Mao, Clive Yik Sham Chung, Judy Wai Ping Yam
Journal
Journal of Extracellular Biology
Abstract
MET receptor tyrosine kinase is a cell surface receptor that plays important role in embryonic devel (show more...)MET receptor tyrosine kinase is a cell surface receptor that plays important role in embryonic development and tissue regeneration. Aberrant MET activation has been widely reported in different human cancers, making MET an attractive therapeutic target. The presence of truncated MET within the nucleus (nMET) with potential novel functions poses a great challenge to the current therapeutic strategies against MET surface receptor. Previous work has demonstrated the promoting effect of nMET in aggressive properties of hepatocellular carcinoma (HCC) cells by activating TAK1/NF-κB signalling pathway. Herein, we report the role of nMET in modulating tumour microenvironment and tumour metastasis mediated by extracellular vesicles (EVs). EVs released by nMET overexpressing cells enhanced cell motility and provoked metastasis. Proteomic profiling revealed the enrichment of translational regulatory proteins in EVs derived from nMET overexpressing cells. These proteins include eukaryotic initiation factor (EIF), ribosomal protein small subunit (RPS) and ribosomal protein larger subunit (RPL) gene families. Knockdown of EIF3I, RPS3A and RPL10 diminished the promoting effect of EVs in cell migration invasiveness and metastasis. In conclusion, the findings reveal an unrecognized capacity of nMET to augment HCC through the release of EVs with oncogenic effect. Targeting these translation-related proteins may serve as an alternative treatment for patients with nMET overexpression. (hide)
EV-METRIC
56% (90th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Protein markers
EV: Alix/ CD9/ TSG101
non-EV: GM130/ tubulin-alpha/ Calreticulin/ Albumin/ Argonaute­2/ PMP70/ Prohibitin/ Tamm­-Horsfall protein
Proteomics
yes
Show all info
Study aim
Function/Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
MHCC97L
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
overnight (16h) at >=100,000g
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 50,000 g and 100,000 g
Pelleting performed
Yes
Pelleting: time(min)
70
Pelleting: rotor type
Type 45 Ti
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
70
Wash: time (min)
70
Wash: Rotor Type
Type 45 Ti
Wash: speed (g)
100000
Characterization: Protein analysis
Protein Concentration Method
Bradford
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
Alix/ CD9/ TSG101
Not detected contaminants
GM130/ tubulin-alpha
Proteomics database
ProteomeXchange
Detected contaminants
Calreticulin
Not detected contaminants
Albumin/ Argonaute­2/ GM130/ PMP70/ Prohibitin/ Tamm­-Horsfall protein
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Modus
Reported size (nm)
156.5
EM
EM-type
Immuno-EM
EM protein
CD63
Image type
Close-up
EV220069 2/11 Homo sapiens MHCC97L (d)(U)C Tey, Sze Kong 2022 56%

Study summary

Full title
All authors
Sze Keong Tey, Samuel Wan Ki Wong, Cherlie Lot Sum Yeung, Jason Ying Ki Li, Xiaowen Mao, Clive Yik Sham Chung, Judy Wai Ping Yam
Journal
Journal of Extracellular Biology
Abstract
MET receptor tyrosine kinase is a cell surface receptor that plays important role in embryonic devel (show more...)MET receptor tyrosine kinase is a cell surface receptor that plays important role in embryonic development and tissue regeneration. Aberrant MET activation has been widely reported in different human cancers, making MET an attractive therapeutic target. The presence of truncated MET within the nucleus (nMET) with potential novel functions poses a great challenge to the current therapeutic strategies against MET surface receptor. Previous work has demonstrated the promoting effect of nMET in aggressive properties of hepatocellular carcinoma (HCC) cells by activating TAK1/NF-κB signalling pathway. Herein, we report the role of nMET in modulating tumour microenvironment and tumour metastasis mediated by extracellular vesicles (EVs). EVs released by nMET overexpressing cells enhanced cell motility and provoked metastasis. Proteomic profiling revealed the enrichment of translational regulatory proteins in EVs derived from nMET overexpressing cells. These proteins include eukaryotic initiation factor (EIF), ribosomal protein small subunit (RPS) and ribosomal protein larger subunit (RPL) gene families. Knockdown of EIF3I, RPS3A and RPL10 diminished the promoting effect of EVs in cell migration invasiveness and metastasis. In conclusion, the findings reveal an unrecognized capacity of nMET to augment HCC through the release of EVs with oncogenic effect. Targeting these translation-related proteins may serve as an alternative treatment for patients with nMET overexpression. (hide)
EV-METRIC
56% (90th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
nMet overexpressing
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Protein markers
EV: Alix/ CD9/ TSG101
non-EV: GM130/ tubulin-alpha/ Calreticulin/ Albumin/ Argonaute­2/ PMP70/ Prohibitin/ Tamm­-Horsfall protein
Proteomics
yes
Show all info
Study aim
Function/Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
MHCC97L
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
overnight (16h) at >=100,000g
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 50,000 g and 100,000 g
Pelleting performed
Yes
Pelleting: time(min)
70
Pelleting: rotor type
Type 45 Ti
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
70
Wash: time (min)
70
Wash: Rotor Type
Type 45 Ti
Wash: speed (g)
100000
Characterization: Protein analysis
Protein Concentration Method
Bradford
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
Alix/ CD9/ TSG101
Not detected contaminants
GM130/ tubulin-alpha
Proteomics database
ProteomeXchange
Detected contaminants
Calreticulin
Not detected contaminants
Albumin/ Argonaute­2/ GM130/ PMP70/ Prohibitin/ Tamm­-Horsfall protein
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Modus
Reported size (nm)
155.1
EM
EM-type
Immuno-EM
EM protein
CD63
Image type
Close-up
EV220040 1/3 Homo sapiens SW620 (d)(U)C Santos MF 2022 56%

Study summary

Full title
All authors
Santos MF, Rappa G, Fontana S, Karbanová J, Aalam F, Tai D, Li Z, Pucci M, Alessandro R, Morimoto C, Corbeil D, Lorico A
Journal
Cells
Abstract
Intercellular communication between cancer cells themselves or with healthy cells in the tumor micro (show more...)Intercellular communication between cancer cells themselves or with healthy cells in the tumor microenvironment and/or pre-metastatic sites plays an important role in cancer progression and metastasis. In addition to ligand-receptor signaling complexes, extracellular vesicles (EVs) are emerging as novel mediators of intercellular communication both in tissue homeostasis and in diseases such as cancer. EV-mediated transfer of molecular activities impacting morphological features and cell motility from highly metastatic SW620 cells to non-metastatic SW480 cells is a good in vitro example to illustrate the increased malignancy of colorectal cancer leading to its transformation and aggressive behavior. In an attempt to intercept the intercellular communication promoted by EVs, we recently developed a monovalent Fab fragment antibody directed against human CD9 tetraspanin and showed its effectiveness in blocking the internalization of melanoma cell-derived EVs and the nuclear transfer of their cargo proteins into recipient cells. Here, we employed the SW480/SW620 model to investigate the anti-cancer potential of the anti-CD9 Fab antibody. We first demonstrated that most EVs derived from SW620 cells contain CD9, making them potential targets. We then found that the anti-CD9 Fab antibody, but not the corresponding divalent antibody, prevented internalization of EVs from SW620 cells into SW480 cells, thereby inhibiting their phenotypic transformation, i.e., the change from a mesenchymal-like morphology to a rounded amoeboid-like shape with membrane blebbing, and thus preventing increased cell migration. Intercepting EV-mediated intercellular communication in the tumor niche with an anti-CD9 Fab antibody, combined with direct targeting of cancer cells, could lead to the development of new anti-cancer therapeutic strategies. (hide)
EV-METRIC
56% (90th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Protein markers
EV: Alix/ CD9/ CD63/ CD81
non-EV: Calnexin
Proteomics
no
Show all info
Study aim
Function/Mechanism of uptake/transfer
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
SW620
EV-harvesting Medium
Serum free medium
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Equal to or above 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
60
Pelleting: rotor type
SW 55 Ti
Pelleting: speed (g)
200000
Characterization: Protein analysis
Protein Concentration Method
microBCA
Protein Yield (µg)
per milliliter of starting sample
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
Alix/ CD9/ CD63/ CD81
Not detected contaminants
Calnexin
Other 1
High resolution STORM micrsocopy
Detected EV-associated proteins
CD9/ CD63/ CD81
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
148
EV concentration
Yes
Particle yield
particles per milliliter of starting sample: 6.90E+10
Other particle analysis name(1)
High resolution STORM microscopy
EV-concentration
No
EV220040 2/3 Homo sapiens SW620 (d)(U)C Santos MF 2022 56%

Study summary

Full title
All authors
Santos MF, Rappa G, Fontana S, Karbanová J, Aalam F, Tai D, Li Z, Pucci M, Alessandro R, Morimoto C, Corbeil D, Lorico A
Journal
Cells
Abstract
Intercellular communication between cancer cells themselves or with healthy cells in the tumor micro (show more...)Intercellular communication between cancer cells themselves or with healthy cells in the tumor microenvironment and/or pre-metastatic sites plays an important role in cancer progression and metastasis. In addition to ligand-receptor signaling complexes, extracellular vesicles (EVs) are emerging as novel mediators of intercellular communication both in tissue homeostasis and in diseases such as cancer. EV-mediated transfer of molecular activities impacting morphological features and cell motility from highly metastatic SW620 cells to non-metastatic SW480 cells is a good in vitro example to illustrate the increased malignancy of colorectal cancer leading to its transformation and aggressive behavior. In an attempt to intercept the intercellular communication promoted by EVs, we recently developed a monovalent Fab fragment antibody directed against human CD9 tetraspanin and showed its effectiveness in blocking the internalization of melanoma cell-derived EVs and the nuclear transfer of their cargo proteins into recipient cells. Here, we employed the SW480/SW620 model to investigate the anti-cancer potential of the anti-CD9 Fab antibody. We first demonstrated that most EVs derived from SW620 cells contain CD9, making them potential targets. We then found that the anti-CD9 Fab antibody, but not the corresponding divalent antibody, prevented internalization of EVs from SW620 cells into SW480 cells, thereby inhibiting their phenotypic transformation, i.e., the change from a mesenchymal-like morphology to a rounded amoeboid-like shape with membrane blebbing, and thus preventing increased cell migration. Intercepting EV-mediated intercellular communication in the tumor niche with an anti-CD9 Fab antibody, combined with direct targeting of cancer cells, could lead to the development of new anti-cancer therapeutic strategies. (hide)
EV-METRIC
56% (90th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
CD9-GFP exression
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Protein markers
EV: Alix/ CD9/ CD63/ CD81
non-EV: Calnexin
Proteomics
no
Show all info
Study aim
Function/Mechanism of uptake/transfer
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
SW620
EV-harvesting Medium
Serum free medium
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Equal to or above 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
60
Pelleting: rotor type
SW 55 Ti
Pelleting: speed (g)
200000
Characterization: Protein analysis
Protein Concentration Method
microBCA
Protein Yield (µg)
per milliliter of starting sample
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
Alix/ CD9/ CD63/ CD81
Not detected contaminants
Calnexin
Other 1
High resolution STORM microscopy
Detected EV-associated proteins
CD9/ CD63/ CD81
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
157
EV concentration
Yes
Particle yield
particles per milliliter of starting sample: 7.60E+10
Other particle analysis name(1)
High resolution STORM microscopy
EV-concentration
No
EV210345 2/17 Homo sapiens Expi293F (d)(U)C Osteikoetxea X 2022 56%

Study summary

Full title
All authors
Osteikoetxea X, Silva A, Lázaro-Ibáñez E, Salmond N, Shatnyeva O, Stein J, Schick J, Wren S, Lindgren J, Firth M, Madsen A, Mayr LM, Overman R, Davies R, Dekker N
Journal
J Extracell Vesicles
Abstract
Extracellular vesicles (EVs) have shown promise as biological delivery vehicles, but therapeutic app (show more...)Extracellular vesicles (EVs) have shown promise as biological delivery vehicles, but therapeutic applications require efficient cargo loading. Here, we developed new methods for CRISPR/Cas9 loading into EVs through reversible heterodimerization of Cas9-fusions with EV sorting partners. Cas9-loaded EVs were collected from engineered Expi293F cells using standard methodology, characterized using nanoparticle tracking analysis, western blotting, and transmission electron microscopy and analysed for CRISPR/Cas9-mediated functional gene editing in a Cre-reporter cellular assay. Light-induced dimerization using Cryptochrome 2 combined with CD9 or a Myristoylation-Palmitoylation-Palmitoylation lipid modification resulted in efficient loading with approximately 25 Cas9 molecules per EV and high functional delivery with 51% gene editing of the Cre reporter cassette in HEK293 and 25% in HepG2 cells, respectively. This approach was also effective for targeting knock-down of the therapeutically relevant PCSK9 gene with 6% indel efficiency in HEK293. Cas9 transfer was detergent-sensitive and associated with the EV fractions after size exclusion chromatography, indicative of EV-mediated transfer. Considering the advantages of EVs over other delivery vectors we envision that this study will prove useful for a range of therapeutic applications, including CRISPR/Cas9 mediated genome editing. (hide)
EV-METRIC
56% (90th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
CD81-CIBN-CRY2-Cas9
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Protein markers
EV: Alix/ CD63/ CD81/ Flotillin­1/ TSG101/ syntenin-1/ B-actin
non-EV: calnexin
Proteomics
no
Show all info
Study aim
Function/Drug delivery
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
Expi293F
EV-harvesting Medium
Serum free medium
Cell viability (%)
95.4
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
70
Pelleting: rotor type
SW 32 Ti
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
38
Wash: time (min)
70
Wash: Rotor Type
SW 32 Ti
Wash: speed (g)
100000
Size-exclusion chromatography
Resin type
Characterization: Protein analysis
Protein Concentration Method
Nanodrop
Protein Yield (µg)
number of particles per million cells
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
Alix/ CD63/ CD81/ Flotillin­1/ TSG101/ syntenin-1/ B-actin/ spCas9
Detected contaminants
calnexin
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
120
EV concentration
Yes
Particle yield
number of particles per million cells: 5.00e+4
EV210345 4/17 Homo sapiens Expi293F (d)(U)C Osteikoetxea X 2022 56%

Study summary

Full title
All authors
Osteikoetxea X, Silva A, Lázaro-Ibáñez E, Salmond N, Shatnyeva O, Stein J, Schick J, Wren S, Lindgren J, Firth M, Madsen A, Mayr LM, Overman R, Davies R, Dekker N
Journal
J Extracell Vesicles
Abstract
Extracellular vesicles (EVs) have shown promise as biological delivery vehicles, but therapeutic app (show more...)Extracellular vesicles (EVs) have shown promise as biological delivery vehicles, but therapeutic applications require efficient cargo loading. Here, we developed new methods for CRISPR/Cas9 loading into EVs through reversible heterodimerization of Cas9-fusions with EV sorting partners. Cas9-loaded EVs were collected from engineered Expi293F cells using standard methodology, characterized using nanoparticle tracking analysis, western blotting, and transmission electron microscopy and analysed for CRISPR/Cas9-mediated functional gene editing in a Cre-reporter cellular assay. Light-induced dimerization using Cryptochrome 2 combined with CD9 or a Myristoylation-Palmitoylation-Palmitoylation lipid modification resulted in efficient loading with approximately 25 Cas9 molecules per EV and high functional delivery with 51% gene editing of the Cre reporter cassette in HEK293 and 25% in HepG2 cells, respectively. This approach was also effective for targeting knock-down of the therapeutically relevant PCSK9 gene with 6% indel efficiency in HEK293. Cas9 transfer was detergent-sensitive and associated with the EV fractions after size exclusion chromatography, indicative of EV-mediated transfer. Considering the advantages of EVs over other delivery vectors we envision that this study will prove useful for a range of therapeutic applications, including CRISPR/Cas9 mediated genome editing. (hide)
EV-METRIC
56% (90th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Mys-CIBN-CRY2-Cas9
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Protein markers
EV: Alix/ CD63/ CD81/ Flotillin­1/ TSG101/ B-actin/ syntenin-1
non-EV: Calnexin
Proteomics
no
Show all info
Study aim
Function/Drug delivery
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
Expi293F
EV-harvesting Medium
Serum free medium
Cell viability (%)
95.4
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
70
Pelleting: rotor type
SW 32 Ti
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
38
Wash: time (min)
70
Wash: Rotor Type
SW 32 Ti
Wash: speed (g)
100000
Size-exclusion chromatography
Resin type
Characterization: Protein analysis
Protein Concentration Method
Nanodrop
Protein Yield (µg)
number of particles per million cells
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
Alix/ CD63/ CD81/ Flotillin­1/ TSG101/ B-actin/ syntenin-1/ spCas9
Detected contaminants
Calnexin
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
120
EV concentration
Yes
Particle yield
number of particles per million cells: 4.00e+4
EV210345 16/17 Homo sapiens Expi293F (d)(U)C Osteikoetxea X 2022 56%

Study summary

Full title
All authors
Osteikoetxea X, Silva A, Lázaro-Ibáñez E, Salmond N, Shatnyeva O, Stein J, Schick J, Wren S, Lindgren J, Firth M, Madsen A, Mayr LM, Overman R, Davies R, Dekker N
Journal
J Extracell Vesicles
Abstract
Extracellular vesicles (EVs) have shown promise as biological delivery vehicles, but therapeutic app (show more...)Extracellular vesicles (EVs) have shown promise as biological delivery vehicles, but therapeutic applications require efficient cargo loading. Here, we developed new methods for CRISPR/Cas9 loading into EVs through reversible heterodimerization of Cas9-fusions with EV sorting partners. Cas9-loaded EVs were collected from engineered Expi293F cells using standard methodology, characterized using nanoparticle tracking analysis, western blotting, and transmission electron microscopy and analysed for CRISPR/Cas9-mediated functional gene editing in a Cre-reporter cellular assay. Light-induced dimerization using Cryptochrome 2 combined with CD9 or a Myristoylation-Palmitoylation-Palmitoylation lipid modification resulted in efficient loading with approximately 25 Cas9 molecules per EV and high functional delivery with 51% gene editing of the Cre reporter cassette in HEK293 and 25% in HepG2 cells, respectively. This approach was also effective for targeting knock-down of the therapeutically relevant PCSK9 gene with 6% indel efficiency in HEK293. Cas9 transfer was detergent-sensitive and associated with the EV fractions after size exclusion chromatography, indicative of EV-mediated transfer. Considering the advantages of EVs over other delivery vectors we envision that this study will prove useful for a range of therapeutic applications, including CRISPR/Cas9 mediated genome editing. (hide)
EV-METRIC
56% (90th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
CD9-FKBP-FRB-Cas9
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Protein markers
EV: Alix/ CD63/ CD81/ Flotillin­1/ TSG101/ B-actin/ syntenin-1
non-EV: Calnexin
Proteomics
no
Show all info
Study aim
Function/Drug delivery
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
Expi293F
EV-harvesting Medium
Serum free medium
Cell viability (%)
95.4
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
70
Pelleting: rotor type
SW 32 Ti
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
38
Wash: time (min)
70
Wash: Rotor Type
SW 32 Ti
Wash: speed (g)
100000
Size-exclusion chromatography
Resin type
Characterization: Protein analysis
Protein Concentration Method
Nanodrop
Protein Yield (µg)
number of particles per million cells
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
Alix/ CD63/ CD81/ Flotillin­1/ TSG101/ B-actin/ syntenin-1
Detected contaminants
Calnexin
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Particle yield
number of particles per million cells
EV210342 1/2 Homo sapiens HEK293T (d)(U)C Tey SK 2022 56%

Study summary

Full title
All authors
Tey SK, Lam H, Wong SWK, Zhao H, To KK, Yam JWP
Journal
J Extracell Vesicles
Abstract
NA (show more...)NA (hide)
EV-METRIC
56% (90th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Protein markers
EV: TSG101/ CD63
non-EV: GM130
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
HEK293T
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
overnight (16h) at >=100,000g
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
70
Pelleting: rotor type
Type 45 Ti
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
70
Wash: time (min)
70
Wash: Rotor Type
Type 45 Ti
Wash: speed (g)
100000
Characterization: Protein analysis
Protein Concentration Method
Bradford
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
TSG101
Not detected contaminants
GM130
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Modus
Reported size (nm)
151
EV concentration
Yes
EM
EM-type
Immuno-EM
EM protein
CD63
Image type
Close-up
EV210342 2/2 Homo sapiens HEK293T (d)(U)C Tey SK 2022 56%

Study summary

Full title
All authors
Tey SK, Lam H, Wong SWK, Zhao H, To KK, Yam JWP
Journal
J Extracell Vesicles
Abstract
NA (show more...)NA (hide)
EV-METRIC
56% (90th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
ACE2-overexpression
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Protein markers
EV: TSG101/ CD63
non-EV: GM130
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
HEK293T
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
overnight (16h) at >=100,000g
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
70
Pelleting: rotor type
Type 45 Ti
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
70
Wash: time (min)
70
Wash: Rotor Type
Type 45 Ti
Wash: speed (g)
100000
Characterization: Protein analysis
Protein Concentration Method
Bradford
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
TSG101
Not detected contaminants
GM130
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Modus
Reported size (nm)
154
EV concentration
Yes
EM
EM-type
Immuno-EM
EM protein
CD63
Image type
Close-up
EV210338 1/1 Bos taurus 1% skim milk (d)(U)C Fang, Zhou 2022 56%

Study summary

Full title
All authors
Fang Zhou, Pearl Ebea, Ezra Mutai, Haichuan Wang, Sonal Sukreet, Shya Navazesh, Haluk Dogan, Wenhao Li, Juan Cui, Peng Ji, Denise M O Ramirez, Janos Zempleni
Journal
Frontiers Nutr.
Abstract
Human milk contains large amounts of small extracellular vesicles (sEVs) and their microRNA cargos, (show more...)Human milk contains large amounts of small extracellular vesicles (sEVs) and their microRNA cargos, whereas infant formulas contain only trace amounts of sEVs and microRNAs. We assessed the transport of sEVs across the blood-brain barrier (BBB) and sEV accumulation in distinct regions of the brain in brain endothelial cells and suckling mice. We further assessed sEV-dependent gene expression profiles and effects on the dendritic complexity of hippocampal granule cells and phenotypes of EV depletion in neonate, juvenile and adult mice. The transfer of sEVs across the BBB was assessed by using fluorophore-labeled bovine sEVs in brain endothelial bEnd.3 monolayers and dual chamber systems, and in wild-type newborn pups fostered to sEV and cargo tracking (ECT) dams that express sEVs labeled with a CD63-eGFP fusion protein for subsequent analysis by serial two-photon tomography and staining with anti-eGFP antibodies. Effects of EVs on gene expression and dendritic architecture of granule cells was analyzed in hippocampi from juvenile mice fed sEV and RNA-depleted (ERD) and sEV and RNA-sufficient (ERS) diets by using RNA-sequencing analysis and Golgi-Cox staining followed by integrated neuronal tracing and morphological analysis of neuronal dendrites, respectively. Spatial learning and severity of kainic acid-induced seizures were assessed in mice fed ERD and ERS diets. bEnd.3 cells internalized sEVs by using a saturable transport mechanism and secreted miR-34a across the basal membrane. sEVs penetrated the entire brain in fostering experiments; major regions of accumulation included the hippocampus, cortex and cerebellum. Two hundred ninety-five genes were differentially expressed in hippocampi from mice fed ERD and ERS diets; high-confidence gene networks included pathways implicated in axon guidance and calcium signaling. Juvenile pups fed the ERD diet had reduced dendritic complexity of dentate granule cells in the hippocampus, scored nine-fold lower in the Barnes maze test of spatial learning and memory, and the severity of seizures was 5-fold higher following kainic acid administration in adult mice fed the ERD diet compared to mice fed the ERS diet. We conclude that sEVs cross the BBB and contribute toward optimal neuronal development, spatial learning and memory, and resistance to kainic acid-induced seizures in mice. (hide)
EV-METRIC
56% (16th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
1% skim milk
Sample origin
Control condition
Focus vesicles
exosome
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Protein markers
EV: Alix/ CD9/ CD63/ CD81/ Integrin-beta/ Histone H3/ Apolipoprotein B
non-EV: None
Proteomics
no
Show all info
Study aim
Function/Mechanism of uptake/transfer
Sample
Species
Bos taurus
Sample Type
1% skim milk
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Between 50,000 g and 100,000 g
Pelleting performed
Yes
Pelleting: time(min)
90
Pelleting: rotor type
Fiberlite-F37L-8x100 rotor
Pelleting: speed (g)
120,000
Wash: volume per pellet (ml)
50
Wash: time (min)
90
Wash: Rotor Type
Fiberlite-F37-8x-100 rotor
Wash: speed (g)
120,000
Characterization: Protein analysis
Protein Concentration Method
BCA/ Qubit
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
Alix/ CD9/ CD63/ CD81
Not detected EV-associated proteins
Integrin-beta/ Histone H3/ Apolipoprotein B
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
106.6 +/- 6.7
EV concentration
Yes
EM
EM-type
Scanning-EM
Image type
Wide-field
EV210237 2/2 Mus musculus BV2 (d)(U)C Gelibter S 2022 56%

Study summary

Full title
All authors
Gelibter S, Marostica G, Mandelli A, Siciliani S, Podini P, Finardi A, Furlan R
Journal
J Extracell Vesicles
Abstract
Mounting evidence suggests that storage has an impact on extracellular vesicles (EVs) properties. Wh (show more...)Mounting evidence suggests that storage has an impact on extracellular vesicles (EVs) properties. While -80°C storage is a widespread approach, some authors proposed improved storage strategies with conflicting results. Here, we designed a systematic study to assess the impact of -80°C storage and freeze-thaw cycles on EVs. We tested the differences among eight storage strategies and investigated the possible fusion phenomena occurring during storage. EVs were collected from human plasma and murine microglia culture by size exclusion chromatography and ultracentrifugation, respectively. The analysis included: concentration, size and zeta potential (tunable resistive pulse sensing), contaminant protein assessment/ flow cytometry for the analysis of two single fluorescent-tagged EVs populations (GFP and mCherry), mixed before preservation. We found that -80°C storage reduces EVs concentration and sample purity in a time-dependent manner. Furthermore, it increases the particle size and size variability and modifies EVs zeta potential, with a shift of EVs in size-charge plots. None of the tested conditions prevented the observed effects. Freeze-thaw cycles lead to an EVs reduction after the first cycle and to a cycle-dependent increase in particle size. With flow cytometry, after storage, we observed a significant population of double-positive EVs (GFP -mCherry ). This observation may suggest the occurrence of fusion phenomena during storage. Our findings show a significant impact of storage on EVs samples in terms of particle loss, purity reduction and fusion phenomena leading to artefactual particles. Depending on downstream analyses and experimental settings, EVs should probably be processed from fresh, non-archival, samples in majority of cases. (hide)
EV-METRIC
56% (90th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
NA
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Protein markers
EV: Alix/ Flotillin-1/ Lamp1/ ANXA1/ IB4
non-EV: GM130/ H3
Proteomics
no
Show all info
Study aim
New methodological development/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Mus musculus
Sample Type
Cell culture supernatant
EV-producing cells
BV2
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
>=18h at >= 100,000g
Cell count
40000000
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
4h
Pelleting: rotor type
SW 32 Ti
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
12
Wash: time (min)
960
Wash: Rotor Type
SW 41 Ti
Wash: speed (g)
100000
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
Alix/ Flotillin-1/ Lamp1/ ANXA1
Detected contaminants
H3
Not detected contaminants
GM130
Flow cytometry
Type of Flow cytometry
CytoflexS
Calibration bead size
0.1, 0.3, 0.5, 0.7, 0.9
Antibody details provided?
Yes
Detected EV-associated proteins
IB4
Characterization: Lipid analysis
No
Characterization: Particle analysis
TRPS
Report type
Mean
Reported size (nm)
50-350
EV concentration
Yes
Particle yield
particles per milliliter of starting sample: 1.00e+11
Particle analysis: flow cytometry
Flow cytometer type
CytoflexS
Hardware adjustment
Calibration bead size
0.1, 0.3, 0.5, 0.7, 0.9
EV concentration
Yes
Particle yield
particles per milliliter of starting sample: 1.00e+7
EV210145 1/1 Homo sapiens human milk (d)(U)C Wang, John 2022 56%

Study summary

Full title
All authors
Haichuan Wang, Di Wu, Sonal Sukreet, Anthony Delaney, Mandy Belfort, Janos Zempleni
Journal
Journal of pediatric gastroenterology and nutrition
Abstract
We assessed feasibility of analyzing exosomes and microRNA cargos in frozen human milk as a prerequi (show more...)We assessed feasibility of analyzing exosomes and microRNA cargos in frozen human milk as a prerequisite for epidemiological studies of milk exosomes. We collected milk from 5 mother-preterm infant dyads at 3 time points during postnatal hospital care for storage at −80 °C. We purified exosomes by ultracentrifugation, probed marker proteins using immunoblots, assessed size and counts with a nanoparticle tracker, and quantified 3 microRNAs with quantitative PCR. Positive exosome marker proteins were detectable; β-casein was the only detectable contaminant. Exosome count and size trended to decrease from early to late samples (count, 2.3 × 109 ± 3.8 × 109 to 5.6 × 108 ± 9.7 × 108 exosomes/mL; size, 117 ± 25 to 92 ± 16 nm). Two microRNAs were detectable in early samples only; cycle threshold values equaled 28.7 ± 0.7 for miR-30d-5p and miR-125a-5p; miR-423-5p was not detectable. We conclude that the analysis of exosomes and quantification of microRNAs is feasible in human milk previously stored at −80 °C. (hide)
EV-METRIC
56% (62nd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
human milk
Sample origin
Control condition
Focus vesicles
exosome
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Protein markers
EV: Alix/ CD63/ CD9
non-EV: beta casein/ alfa tubulin/ intergrin beta
Proteomics
no
Show all info
Study aim
Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
human milk
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Between 50,000 g and 100,000 g
Pelleting performed
Yes
Pelleting: time(min)
90
Pelleting: rotor type
Thermo F37L-8x100
Pelleting: speed (g)
130000
Characterization: Protein analysis
Protein Concentration Method
Other
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
CD9/ CD63/ Alix
Not detected contaminants
tubulin-alfa/ integrin-beta/ casein-beta
Characterization: RNA analysis
RNA analysis
Type
(RT)(q)PCR
Database
No
Proteinase treatment
No
RNAse treatment
No
Characterization: Lipid analysis
Yes
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
117
EV concentration
Yes
Particle yield
Yes, as number of particles per milliliter of starting sample 2000000000
EV210024 10/12 Homo sapiens Differentiated Glioblastoma Stem-like cells (DGC) (d)(U)C André-Grégoire, Gwennan 2022 56%

Study summary

Full title
All authors
Gwennan André-Grégoire, Clément Maghe, Tiphaine Douanne, Sara, Rosińska, Fiorella Spinelli, An Thys, Kilian Trillet, Kathryn A.Jacobs, Cyndie Ballu, Aurélien Dupont, Anne-Marie Lyne, Florence M.G.Cavalli, Ignacio Busnelli, Vincent Hyenne, Jacky G.Goetz, Nicolas Bidère, Julie Gavard
Journal
iScience
Abstract
Extracellular vesicles (EVs) are lipid-based nanosized particles that convey biological material fro (show more...)Extracellular vesicles (EVs) are lipid-based nanosized particles that convey biological material from donor to recipient cells. EVs play key roles in glioblastoma progression because glioblastoma stem-like cells (GSCs) release pro-oncogenic, pro-angiogenic, and pro-inflammatory EVs. However, the molecular basis of EV release remains poorly understood. Here, we report the identification of the pseudokinase MLKL, a crucial effector of cell death by necroptosis, as a regulator of the constitutive secretion of EVs in GSCs. We find that genetic, protein, and pharmacological targeting of MLKL alters intracellular trafficking and EV release, and reduces GSC expansion. Nevertheless, this function ascribed to MLKL appears independent of its role during necroptosis. In vivo, pharmacological inhibition of MLKL reduces the tumor burden and the level of plasmatic EVs. This work highlights the necroptosis-independent role of MLKL in vesicle release and suggests that interfering with EVs is a promising therapeutic option to sensitize glioblastoma cells. (hide)
EV-METRIC
56% (90th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
NSA
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Protein markers
EV: Alix/ CD63
non-EV: GM130
Proteomics
yes
Show all info
Study aim
Biogenesis/cargo sorting
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
Differentiated Glioblastoma Stem-like cells (DGC)
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
overnight (16h) at >=100,000g
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: rotor type
SW 41 Ti
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
11
Wash: time (min)
120
Wash: Rotor Type
SW 41 Ti
Wash: speed (g)
100000
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Antibody details provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
Alix/ CD63
Not detected contaminants
GM130
ELISA
Antibody details provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
CD63
Proteomics database
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
TRPS
Report type
Mean
Reported size (nm)
125
EV concentration
Yes
EM
EM-type
Transmission-EM
Image type
Close-up
EV190065 1/6 Homo sapiens SW620 Filtration
dUC
Wenzhe, Li 2022 56%

Study summary

Full title
All authors
Wenzhe Li, Ling Zhu, Kaidi Li, Siyuan Ye, Huayi Wang, Yadong Wang, Jianchao Xue, Chen Wang, Shanqing Li, Naixin Liang, Yanlian Yang
Journal
Nanomaterials
Abstract
Small extracellular vesicles (sEVs) carry molecular information from their source cells and are desi (show more...)Small extracellular vesicles (sEVs) carry molecular information from their source cells and are desired biomarkers for cancer diagnosis. We establish a machine learning-assisted dual-marker detection method to analyze the expression of epidermal growth factor receptor (EGFR) and C-X-C chemokine receptor 4 (CXCR4) in serum sEVs for the diagnosis and prognosis prediction of non-small cell lung cancer (NSCLC). We find that the serum sEV EGFR and CXCR4 are significantly higher in advanced stage NSCLC (A/NSCLC) patients compared to early stage NSCLC (E/NSCLC) patients and the healthy donors (HDs). A receiver operating characteristic curve (ROC) analysis demonstrates that the combination of EGFR and CXCR4 in serum sEVs as an efficient diagnostic index and malignant degree indicator for NSCLC. Machine learning further shows a diagnostic accuracy of 97.4% for the training cohort and 91.7% for the validation cohort based on the combinational marker. Moreover, this machine leaning-assisted serum sEV analysis successfully predicts the possibility of tumor relapse in three NSCLC patients by comparing their serum sEVs before and three days after surgery. This study provides an intelligent serum sEV-based assay for the diagnosis and prognosis prediction of NSCLC, and will benefit the precision management of NSCLC. (hide)
EV-METRIC
56% (90th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Filtration
dUC
Protein markers
EV: EGFR/ CD81/ Flotillin-1
non-EV: Calnexin
Proteomics
no
Show all info
Study aim
New methodological development/Biomarker/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
SW620
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
overnight (16h) at >=100,000g
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
600
Pelleting: rotor type
Type 70 Ti
Pelleting: speed (g)
150000
Wash: volume per pellet (ml)
26,3
Wash: time (min)
120
Wash: Rotor Type
Type 70 Ti
Wash: speed (g)
150000
Filtration steps
0.22µm or 0.2µm
Other
Name other separation method
dUC
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Antibody details provided?
Yes
Detected EV-associated proteins
EGFR/ CD81/ Flotillin-1
Not detected contaminants
Calnexin
Flow cytometry aspecific beads
Antibody details provided?
Yes
Flow cytometry specific beads
Antibody details provided?
No
Antibody dilution provided?
No
Detected EV-associated proteins
EGFR
Characterization: RNA analysis
RNA analysis
Type
(RT)(q)PCR
Database
No
Proteinase treatment
No
RNAse treatment
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
DLS
Report type
Not Reported
NTA
Report type
Size range/distribution
Reported size (nm)
121.2±65.9
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
EV190065 2/6 Homo sapiens A549 Filtration
dUC
Wenzhe, Li 2022 56%

Study summary

Full title
All authors
Wenzhe Li, Ling Zhu, Kaidi Li, Siyuan Ye, Huayi Wang, Yadong Wang, Jianchao Xue, Chen Wang, Shanqing Li, Naixin Liang, Yanlian Yang
Journal
Nanomaterials
Abstract
Small extracellular vesicles (sEVs) carry molecular information from their source cells and are desi (show more...)Small extracellular vesicles (sEVs) carry molecular information from their source cells and are desired biomarkers for cancer diagnosis. We establish a machine learning-assisted dual-marker detection method to analyze the expression of epidermal growth factor receptor (EGFR) and C-X-C chemokine receptor 4 (CXCR4) in serum sEVs for the diagnosis and prognosis prediction of non-small cell lung cancer (NSCLC). We find that the serum sEV EGFR and CXCR4 are significantly higher in advanced stage NSCLC (A/NSCLC) patients compared to early stage NSCLC (E/NSCLC) patients and the healthy donors (HDs). A receiver operating characteristic curve (ROC) analysis demonstrates that the combination of EGFR and CXCR4 in serum sEVs as an efficient diagnostic index and malignant degree indicator for NSCLC. Machine learning further shows a diagnostic accuracy of 97.4% for the training cohort and 91.7% for the validation cohort based on the combinational marker. Moreover, this machine leaning-assisted serum sEV analysis successfully predicts the possibility of tumor relapse in three NSCLC patients by comparing their serum sEVs before and three days after surgery. This study provides an intelligent serum sEV-based assay for the diagnosis and prognosis prediction of NSCLC, and will benefit the precision management of NSCLC. (hide)
EV-METRIC
56% (90th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Filtration
dUC
Protein markers
EV: EGFR/ CD81/ Flotillin-1/ CXCR4
non-EV: Calnexin
Proteomics
no
Show all info
Study aim
New methodological development/Biomarker/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
A549
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
overnight (16h) at >=100,000g
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
600
Pelleting: rotor type
Type 70 Ti
Pelleting: speed (g)
150000
Wash: volume per pellet (ml)
26,3
Wash: time (min)
120
Wash: Rotor Type
Type 70 Ti
Wash: speed (g)
150000
Filtration steps
0.22µm or 0.2µm
Other
Name other separation method
dUC
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Antibody details provided?
Yes
Detected EV-associated proteins
EGFR/ CD81/ Flotillin-1/ CXCR4
Not detected contaminants
Calnexin
Flow cytometry aspecific beads
Antibody details provided?
Yes
Flow cytometry specific beads
Antibody details provided?
No
Antibody dilution provided?
No
Detected EV-associated proteins
EGFR/ CXCR4
Characterization: RNA analysis
RNA analysis
Type
(RT)(q)PCR
Database
No
Proteinase treatment
No
RNAse treatment
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
DLS
Report type
Not Reported
NTA
Report type
Size range/distribution
Reported size (nm)
121.2±65.9
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
EV190065 3/6 Homo sapiens H1975 Filtration
dUC
Wenzhe, Li 2022 56%

Study summary

Full title
All authors
Wenzhe Li, Ling Zhu, Kaidi Li, Siyuan Ye, Huayi Wang, Yadong Wang, Jianchao Xue, Chen Wang, Shanqing Li, Naixin Liang, Yanlian Yang
Journal
Nanomaterials
Abstract
Small extracellular vesicles (sEVs) carry molecular information from their source cells and are desi (show more...)Small extracellular vesicles (sEVs) carry molecular information from their source cells and are desired biomarkers for cancer diagnosis. We establish a machine learning-assisted dual-marker detection method to analyze the expression of epidermal growth factor receptor (EGFR) and C-X-C chemokine receptor 4 (CXCR4) in serum sEVs for the diagnosis and prognosis prediction of non-small cell lung cancer (NSCLC). We find that the serum sEV EGFR and CXCR4 are significantly higher in advanced stage NSCLC (A/NSCLC) patients compared to early stage NSCLC (E/NSCLC) patients and the healthy donors (HDs). A receiver operating characteristic curve (ROC) analysis demonstrates that the combination of EGFR and CXCR4 in serum sEVs as an efficient diagnostic index and malignant degree indicator for NSCLC. Machine learning further shows a diagnostic accuracy of 97.4% for the training cohort and 91.7% for the validation cohort based on the combinational marker. Moreover, this machine leaning-assisted serum sEV analysis successfully predicts the possibility of tumor relapse in three NSCLC patients by comparing their serum sEVs before and three days after surgery. This study provides an intelligent serum sEV-based assay for the diagnosis and prognosis prediction of NSCLC, and will benefit the precision management of NSCLC. (hide)
EV-METRIC
56% (90th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Filtration
dUC
Protein markers
EV: EGFR/ CD81/ Flotillin-1/ CXCR4
non-EV: Calnexin
Proteomics
no
Show all info
Study aim
New methodological development/Biomarker/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
H1975
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
overnight (16h) at >=100,000g
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
600
Pelleting: rotor type
Type 70 Ti
Pelleting: speed (g)
150000
Wash: volume per pellet (ml)
26,3
Wash: time (min)
120
Wash: Rotor Type
Type 70 Ti
Wash: speed (g)
150000
Filtration steps
0.22µm or 0.2µm
Other
Name other separation method
dUC
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Antibody details provided?
Yes
Detected EV-associated proteins
EGFR/ CD81/ Flotillin-1/ CXCR4
Not detected contaminants
Calnexin
Flow cytometry aspecific beads
Antibody details provided?
Yes
Flow cytometry specific beads
Antibody details provided?
No
Antibody dilution provided?
No
Detected EV-associated proteins
EGFR/ CXCR4
Characterization: RNA analysis
RNA analysis
Type
(RT)(q)PCR
Database
No
Proteinase treatment
No
RNAse treatment
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
DLS
Report type
Not Reported
NTA
Report type
Size range/distribution
Reported size (nm)
131.1±53.9
EV concentration
Yes
Particle yield
as number of particles per milliliter of starting sample: 1.00e+0
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
EV190065 4/6 Homo sapiens H1650 Filtration
dUC
Wenzhe, Li 2022 56%

Study summary

Full title
All authors
Wenzhe Li, Ling Zhu, Kaidi Li, Siyuan Ye, Huayi Wang, Yadong Wang, Jianchao Xue, Chen Wang, Shanqing Li, Naixin Liang, Yanlian Yang
Journal
Nanomaterials
Abstract
Small extracellular vesicles (sEVs) carry molecular information from their source cells and are desi (show more...)Small extracellular vesicles (sEVs) carry molecular information from their source cells and are desired biomarkers for cancer diagnosis. We establish a machine learning-assisted dual-marker detection method to analyze the expression of epidermal growth factor receptor (EGFR) and C-X-C chemokine receptor 4 (CXCR4) in serum sEVs for the diagnosis and prognosis prediction of non-small cell lung cancer (NSCLC). We find that the serum sEV EGFR and CXCR4 are significantly higher in advanced stage NSCLC (A/NSCLC) patients compared to early stage NSCLC (E/NSCLC) patients and the healthy donors (HDs). A receiver operating characteristic curve (ROC) analysis demonstrates that the combination of EGFR and CXCR4 in serum sEVs as an efficient diagnostic index and malignant degree indicator for NSCLC. Machine learning further shows a diagnostic accuracy of 97.4% for the training cohort and 91.7% for the validation cohort based on the combinational marker. Moreover, this machine leaning-assisted serum sEV analysis successfully predicts the possibility of tumor relapse in three NSCLC patients by comparing their serum sEVs before and three days after surgery. This study provides an intelligent serum sEV-based assay for the diagnosis and prognosis prediction of NSCLC, and will benefit the precision management of NSCLC. (hide)
EV-METRIC
56% (90th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Filtration
dUC
Protein markers
EV: CD81/ Flotillin-1/ CXCR4
non-EV: Calnexin
Proteomics
no
Show all info
Study aim
New methodological development/Biomarker/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
H1650
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
overnight (16h) at >=100,000g
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
600
Pelleting: rotor type
Type 70 Ti
Pelleting: speed (g)
150000
Wash: volume per pellet (ml)
26,3
Wash: time (min)
120
Wash: Rotor Type
Type 70 Ti
Wash: speed (g)
150000
Filtration steps
0.22µm or 0.2µm
Other
Name other separation method
dUC
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Antibody details provided?
Yes
Detected EV-associated proteins
CD81/ Flotillin-1/ CXCR4
Not detected contaminants
Calnexin
Flow cytometry aspecific beads
Antibody details provided?
Yes
Flow cytometry specific beads
Antibody details provided?
No
Antibody dilution provided?
No
Detected EV-associated proteins
CXCR4
Characterization: RNA analysis
RNA analysis
Type
(RT)(q)PCR
Database
No
Proteinase treatment
No
RNAse treatment
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
DLS
Report type
Not Reported
NTA
Report type
Size range/distribution
Reported size (nm)
131.1±53.9
EV concentration
Yes
Particle yield
as number of particles per milliliter of starting sample: 1.00e+0
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
EV190047 1/10 Homo sapiens MDA-MB-231 (d)(U)C
ExoQuick
UF
Xu, Jing 2022 56%

Study summary

Full title
All authors
Jing Xu, Kevin C Yang, Nancy Erro Go, Shane Colborne, Cally J Ho, Elham Hosseini-Beheshti, Alf H Lystad, Anne Simonsen, Emma Tomlinson Guns, Gregg B Morin, Sharon M Gorski
Journal
Autophagy
Abstract
Chloroquine (CQ), a lysosomotropic agent, is commonly used to inhibit lysosomal degradation and macr (show more...)Chloroquine (CQ), a lysosomotropic agent, is commonly used to inhibit lysosomal degradation and macroautophagy/autophagy. Here we investigated the cell-extrinsic effects of CQ on secretion. We showed that lysosomal and autophagy inhibition by CQ altered the secretome, and induced the release of Atg8 orthologs and autophagy receptors. Atg8-family proteins, in particular, were secreted inside small extracellular vesicles (sEVs) in a lipidation-dependent manner. CQ treatment enhanced the release of Atg8-family proteins inside sEVs. Using full-length ATG16L1 and an ATG16L1 mutant that enables Atg8-family protein lipidation on double but not on single membranes, we demonstrated that LC3B is released in two distinct sEV populations: one enriched with SDCBP/Syntenin-1, CD63, and endosomal lipidated LC3B, and another that contains LC3B but is not enriched with SDCBP/Syntenin-1 or CD63, and which our data supports as originating from a double-membrane source. Our findings underscore the context-dependency of sEV heterogeneity and composition, and illustrate the integration of autophagy and sEV composition in response to lysosomal inhibition.Abbreviations: ACTB: actin beta; ANOVA: analysis of variance; ATG4B: autophagy related 4B cysteine peptidase; Atg8: autophagy related 8; ATG16L1: autophagy related 16 like 1; ATP5F1A/ATP5a: ATP synthase F1 subunit alpha; CALCOCO2: calcium binding and coiled-coil domain 2; CASP3: caspase 3; CASP7: caspase 7; CQ: chloroquine; CD9: CD9 molecule; CD63: CD63 molecule; DAPI: 4',6-diamidino-2-phenylindole; DQ-BSA: dye quenched-bovine serum albumin; ER: endoplasmic reticulum; ERN1/IRE1a: endoplasmic reticulum to nucleus signaling 1; EV: extracellular vesicles; FBS: fetal bovine serum; FDR: false discovery rate; GABARAP: GABA type A receptor-associated protein; GABARAPL2: GABA type A receptor associated protein like 2; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GFP: green fluorescent protein; GO: gene ontology; HCQ: hydroxychloroquine; HSP90AA1: heat shock protein 90 alpha family class A member 1; IP: immunoprecipitation; KO: knockout; LAMP2: lysosomal associated membrane protein 2; LIR: LC3-interacting region; LMNA: lamin A/C; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MS: mass spectrometry; NBR1: NBR1 autophagy cargo receptor; NCOA4: nuclear receptor coactivator 4; NTA: nanoparticle tracking analysis; PE: phosphatidylethanolamine; PECA: probe-level expression change averaging; SDCBP/syntenin-1: syndecan binding protein; SD: standard deviation; SE: secreted; sEV: small extracellular vesicles; SQSTM1/p62: sequestosome 1; TAX1BP1: Tax1 binding protein 1; TEM: transmission electron microscopy; TMT: tandem-mass tag; TSG101: tumor susceptibility 101; ULK1: unc-51 like autophagy activating kinase 1; WC: whole cell. (hide)
EV-METRIC
56% (90th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
ExoQuick
UF
Protein markers
EV: TSG101/ CD63/ HSP90/ LAMP2/ CD9/ Syntenin-1
non-EV: IRE1a
Proteomics
yes
Show all info
Study aim
Function/Biogenesis/cargo sorting/Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
MDA-MB-231
EV-harvesting Medium
Serum free medium
Cell viability (%)
95
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Pelleting performed
No
Ultra filtration
Cut-off size (kDa)
100
Membrane type
Regenerated cellulose
Commercial kit
ExoQuick
Other
Name other separation method
ExoQuick
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
CD9/ CD63/ Syntenin-1/ LAMP2/ HSP90/ TSG101
Not detected contaminants
IRE1a
Proteomics database
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Modus
Reported size (nm)
134.1
EV concentration
Yes
EM
EM-type
Transmission-EM
Image type
Close-up
EV190047 4/10 Homo sapiens MDA-MB-231 (d)(U)C
ExoQuick
UF
Xu, Jing 2022 56%

Study summary

Full title
All authors
Jing Xu, Kevin C Yang, Nancy Erro Go, Shane Colborne, Cally J Ho, Elham Hosseini-Beheshti, Alf H Lystad, Anne Simonsen, Emma Tomlinson Guns, Gregg B Morin, Sharon M Gorski
Journal
Autophagy
Abstract
Chloroquine (CQ), a lysosomotropic agent, is commonly used to inhibit lysosomal degradation and macr (show more...)Chloroquine (CQ), a lysosomotropic agent, is commonly used to inhibit lysosomal degradation and macroautophagy/autophagy. Here we investigated the cell-extrinsic effects of CQ on secretion. We showed that lysosomal and autophagy inhibition by CQ altered the secretome, and induced the release of Atg8 orthologs and autophagy receptors. Atg8-family proteins, in particular, were secreted inside small extracellular vesicles (sEVs) in a lipidation-dependent manner. CQ treatment enhanced the release of Atg8-family proteins inside sEVs. Using full-length ATG16L1 and an ATG16L1 mutant that enables Atg8-family protein lipidation on double but not on single membranes, we demonstrated that LC3B is released in two distinct sEV populations: one enriched with SDCBP/Syntenin-1, CD63, and endosomal lipidated LC3B, and another that contains LC3B but is not enriched with SDCBP/Syntenin-1 or CD63, and which our data supports as originating from a double-membrane source. Our findings underscore the context-dependency of sEV heterogeneity and composition, and illustrate the integration of autophagy and sEV composition in response to lysosomal inhibition.Abbreviations: ACTB: actin beta; ANOVA: analysis of variance; ATG4B: autophagy related 4B cysteine peptidase; Atg8: autophagy related 8; ATG16L1: autophagy related 16 like 1; ATP5F1A/ATP5a: ATP synthase F1 subunit alpha; CALCOCO2: calcium binding and coiled-coil domain 2; CASP3: caspase 3; CASP7: caspase 7; CQ: chloroquine; CD9: CD9 molecule; CD63: CD63 molecule; DAPI: 4',6-diamidino-2-phenylindole; DQ-BSA: dye quenched-bovine serum albumin; ER: endoplasmic reticulum; ERN1/IRE1a: endoplasmic reticulum to nucleus signaling 1; EV: extracellular vesicles; FBS: fetal bovine serum; FDR: false discovery rate; GABARAP: GABA type A receptor-associated protein; GABARAPL2: GABA type A receptor associated protein like 2; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GFP: green fluorescent protein; GO: gene ontology; HCQ: hydroxychloroquine; HSP90AA1: heat shock protein 90 alpha family class A member 1; IP: immunoprecipitation; KO: knockout; LAMP2: lysosomal associated membrane protein 2; LIR: LC3-interacting region; LMNA: lamin A/C; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MS: mass spectrometry; NBR1: NBR1 autophagy cargo receptor; NCOA4: nuclear receptor coactivator 4; NTA: nanoparticle tracking analysis; PE: phosphatidylethanolamine; PECA: probe-level expression change averaging; SDCBP/syntenin-1: syndecan binding protein; SD: standard deviation; SE: secreted; sEV: small extracellular vesicles; SQSTM1/p62: sequestosome 1; TAX1BP1: Tax1 binding protein 1; TEM: transmission electron microscopy; TMT: tandem-mass tag; TSG101: tumor susceptibility 101; ULK1: unc-51 like autophagy activating kinase 1; WC: whole cell. (hide)
EV-METRIC
56% (90th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
10uM CQ
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
ExoQuick
UF
Protein markers
EV: TSG101/ CD63/ HSP90/ LAMP2/ CD9/ Syntenin-1
non-EV: IRE1a
Proteomics
yes
Show all info
Study aim
Function/Biogenesis/cargo sorting/Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
MDA-MB-231
EV-harvesting Medium
Serum free medium
Cell viability (%)
95
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Pelleting performed
No
Ultra filtration
Cut-off size (kDa)
100
Membrane type
Regenerated cellulose
Commercial kit
ExoQuick
Other
Name other separation method
ExoQuick
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
Syntenin-1/ LAMP2/ CD9/ CD63/ HSP90/ TSG101
Not detected contaminants
IRE1a
Proteomics database
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Modus
Reported size (nm)
130.7
EV concentration
Yes
EM
EM-type
Transmission-EM
Image type
Close-up
EV210301 1/1 Homo sapiens Expi293F (d)(U)C
DG
McConnell, Russell 2022 55%

Study summary

Full title
All authors
Russell E. McConnell, Madeleine Youniss, Bhargavee Gnanasambandam, Palak Shah, Wei Zhang, Jonathan D. Finn
Journal
J Extracell Vesicles
Abstract
Extracellular vesicles (EV) are important mediators of cell communication and physiology. EVs are fr (show more...)Extracellular vesicles (EV) are important mediators of cell communication and physiology. EVs are frequently investigated by transiently transfecting cells with plasmid DNA to produce EVs modified with protein(s) or nucleic acid(s) of interest. DNA-transfection reagent complexes (DTC) are approximately the same size as EVs, raising the possibility that some purification procedures may fail to separate these two species and activity arising from carryover DTC may be improperly attributed to EVs. We find that differential ultracentrifugation, a commonly employed EV isolation procedure, does not separate EVs from DTC present in the cell culture supernatant of transiently transfected cells. We demonstrate that the biological activity of an EV-directed Cre recombinase is due to contaminating plasmid DNA and not EV-mediated delivery of Cre protein. Moreover, steps commonly taken to remove plasmid DNA from EV samples, such as media exchanges and treatment with nucleases, are ineffective at avoiding this artefact. Due to the pernicious nature of plasmid DNA in these cellular assays, some reports of EV function are likely artefacts produced by contaminating DTC. EVs and DTC can be separated by density gradient ultracentrifugation, highlighting the importance of validating elimination of DTC when using transient transfection of EV-producing cells to interrogate EV function. (hide)
EV-METRIC
55% (88th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Density gradient
Protein markers
EV: CD9/ CD63/ CD81
non-EV: None
Proteomics
no
Show all info
Study aim
Function/Mechanism of uptake/transfer
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
Expi293F
EV-harvesting Medium
Serum free medium
Cell viability (%)
90
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
60
Pelleting: rotor type
Type 70 Ti
Pelleting: speed (g)
133,9
Wash: volume per pellet (ml)
13
Wash: time (min)
180
Wash: Rotor Type
SW 41 Ti
Wash: speed (g)
150
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
4
Lowest density fraction
18
Highest density fraction
45
Total gradient volume, incl. sample (mL)
12
Sample volume (mL)
1
Orientation
Bottom-up
Rotor type
SW 41 Ti
Speed (g)
150000
Duration (min)
960
Fraction processing
Centrifugation
Pelleting: volume per fraction
13
Pelleting: duration (min)
120
Pelleting: rotor type
SW 41 Ti
Pelleting: speed (g)
133900
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
CD9/ CD63/ CD81
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
210
EV concentration
Yes
101 - 150 of 468 keyboard_arrow_leftkeyboard_arrow_right