Search > Results

You searched for: EV200081 (EV-TRACK ID)

Showing 1 - 4 of 4

Experiment number
  • If needed, multiple experiments were identified in a single publication based on differing sample types, separation protocols and/or vesicle types of interest.
Species
  • Species of origin of the EVs.
Separation protocol
  • Gives a short, non-chronological overview of the different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Details EV-TRACK ID Experiment nr. Species Sample type Separation protocol First author Year EV-METRIC
EV200081 1/4 Homo sapiens Blood plasma DG
SEC (non-commercial)
Vergauwen, Glenn 2021 88%

Study summary

Full title
All authors
Glenn Vergauwen, Joeri Tulkens, Cláudio Pinheiro, Francisco Avila Cobos, Sándor Dedeyne, Marie-Angélique De Scheerder, Linos Vandekerckhove, Francis Impens, Ilkka Miinalainen, Geert Braems, Kris Gevaert, Pieter Mestdagh, Jo Vandesompele, Hannelore Denys, Olivier De Wever, An Hendrix
Journal
J Extracell Vesicles
Abstract
Separating extracellular vesicles (EV) from blood plasma is challenging and complicates their biolog (show more...)Separating extracellular vesicles (EV) from blood plasma is challenging and complicates their biological understanding and biomarker development. In this study, we fractionate blood plasma by combining size-exclusion chromatography (SEC) and OptiPrep density gradient centrifugation to study clinical context-dependent and time-dependent variations in the biomolecular landscape of systemically circulating EV. Using pooled blood plasma samples from breast cancer patients, we first demonstrate the technical repeatability of blood plasma fractionation. Using serial blood plasma samples from HIV and ovarian cancer patients (n = 10) we next show that EV carry a clinical context-dependent and/or time-dependent protein and small RNA composition, including miRNA and tRNA. In addition, differential analysis of blood plasma fractions provides a catalogue of putative proteins not associated with systemically circulating EV. In conclusion, the implementation of blood plasma fractionation allows to advance the biological understanding and biomarker development of systemically circulating EV. (hide)
EV-METRIC
88% (99th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Blood plasma
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Density gradient
Size-exclusion chromatography (non-commercial)
Protein markers
EV: Flotillin1/ CD9
non-EV: APOB/ APOA1
Proteomics
no
EV density (g/ml)
1.09-1.10
Show all info
Study aim
Biomarker/Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Separation Method
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
4
Lowest density fraction
5%
Highest density fraction
40%
Total gradient volume, incl. sample (mL)
16.5
Sample volume (mL)
1
Orientation
Top-down
Rotor type
SW 32.1 Ti
Speed (g)
100000
Duration (min)
1080
Fraction volume (mL)
1
Fraction processing
Size-exclusion chromatography
Size-exclusion chromatography
Total column volume (mL)
10
Sample volume/column (mL)
2
Resin type
Sepharose CL-2B
Characterization: Protein analysis
Protein Concentration Method
Fluorometric assay (e.g. Qubit, NanoOrange,...)
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
Flotillin1
Not detected contaminants
APOA1
ELISA
Antibody details provided?
No
Detected EV-associated proteins
CD9
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Not Reported
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
Report size (nm)
50-250
EV200081 2/4 Homo sapiens Blood plasma DG
SEC (non-commercial)
Vergauwen, Glenn 2021 50%

Study summary

Full title
All authors
Glenn Vergauwen, Joeri Tulkens, Cláudio Pinheiro, Francisco Avila Cobos, Sándor Dedeyne, Marie-Angélique De Scheerder, Linos Vandekerckhove, Francis Impens, Ilkka Miinalainen, Geert Braems, Kris Gevaert, Pieter Mestdagh, Jo Vandesompele, Hannelore Denys, Olivier De Wever, An Hendrix
Journal
J Extracell Vesicles
Abstract
Separating extracellular vesicles (EV) from blood plasma is challenging and complicates their biolog (show more...)Separating extracellular vesicles (EV) from blood plasma is challenging and complicates their biological understanding and biomarker development. In this study, we fractionate blood plasma by combining size-exclusion chromatography (SEC) and OptiPrep density gradient centrifugation to study clinical context-dependent and time-dependent variations in the biomolecular landscape of systemically circulating EV. Using pooled blood plasma samples from breast cancer patients, we first demonstrate the technical repeatability of blood plasma fractionation. Using serial blood plasma samples from HIV and ovarian cancer patients (n = 10) we next show that EV carry a clinical context-dependent and/or time-dependent protein and small RNA composition, including miRNA and tRNA. In addition, differential analysis of blood plasma fractions provides a catalogue of putative proteins not associated with systemically circulating EV. In conclusion, the implementation of blood plasma fractionation allows to advance the biological understanding and biomarker development of systemically circulating EV. (hide)
EV-METRIC
50% (83rd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Blood plasma
Sample origin
breast cancer
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Density gradient
Size-exclusion chromatography (non-commercial)
Protein markers
EV: None
non-EV: None
Proteomics
yes
EV density (g/ml)
1.09-1.10
Show all info
Study aim
Biomarker/Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Separation Method
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
4
Lowest density fraction
5%
Highest density fraction
40%
Total gradient volume, incl. sample (mL)
16.5
Sample volume (mL)
1
Orientation
Top-down
Rotor type
SW 32.1 Ti
Speed (g)
100000
Duration (min)
1080
Fraction volume (mL)
1
Fraction processing
Size-exclusion chromatography
Size-exclusion chromatography
Total column volume (mL)
10
Sample volume/column (mL)
2
Resin type
Sepharose CL-2B
Characterization: Protein analysis
Protein Concentration Method
Fluorometric assay (e.g. Qubit, NanoOrange,...)
Proteomics database
Yes:
Characterization: RNA analysis
RNA analysis
Type
RNAsequencing
Database
No
Proteinase treatment
No
RNAse treatment
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
None
EV200081 3/4 Homo sapiens Blood plasma DG
SEC (non-commercial)
Vergauwen, Glenn 2021 50%

Study summary

Full title
All authors
Glenn Vergauwen, Joeri Tulkens, Cláudio Pinheiro, Francisco Avila Cobos, Sándor Dedeyne, Marie-Angélique De Scheerder, Linos Vandekerckhove, Francis Impens, Ilkka Miinalainen, Geert Braems, Kris Gevaert, Pieter Mestdagh, Jo Vandesompele, Hannelore Denys, Olivier De Wever, An Hendrix
Journal
J Extracell Vesicles
Abstract
Separating extracellular vesicles (EV) from blood plasma is challenging and complicates their biolog (show more...)Separating extracellular vesicles (EV) from blood plasma is challenging and complicates their biological understanding and biomarker development. In this study, we fractionate blood plasma by combining size-exclusion chromatography (SEC) and OptiPrep density gradient centrifugation to study clinical context-dependent and time-dependent variations in the biomolecular landscape of systemically circulating EV. Using pooled blood plasma samples from breast cancer patients, we first demonstrate the technical repeatability of blood plasma fractionation. Using serial blood plasma samples from HIV and ovarian cancer patients (n = 10) we next show that EV carry a clinical context-dependent and/or time-dependent protein and small RNA composition, including miRNA and tRNA. In addition, differential analysis of blood plasma fractions provides a catalogue of putative proteins not associated with systemically circulating EV. In conclusion, the implementation of blood plasma fractionation allows to advance the biological understanding and biomarker development of systemically circulating EV. (hide)
EV-METRIC
50% (83rd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Blood plasma
Sample origin
ovarian cancer
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Density gradient
Size-exclusion chromatography (non-commercial)
Protein markers
EV: None
non-EV: None
Proteomics
yes
EV density (g/ml)
1.09-1.10
Show all info
Study aim
Biomarker/Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Separation Method
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
4
Lowest density fraction
5%
Highest density fraction
40%
Total gradient volume, incl. sample (mL)
16.5
Sample volume (mL)
1
Orientation
Top-down
Rotor type
SW 32.1 Ti
Speed (g)
100000
Duration (min)
1080
Fraction volume (mL)
1
Fraction processing
Size-exclusion chromatography
Size-exclusion chromatography
Total column volume (mL)
10
Sample volume/column (mL)
2
Resin type
Sepharose CL-2B
Characterization: Protein analysis
Protein Concentration Method
Fluorometric assay (e.g. Qubit, NanoOrange,...)
Proteomics database
Yes:
Characterization: RNA analysis
RNA analysis
Type
RNAsequencing
Database
No
Proteinase treatment
No
RNAse treatment
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
None
EV200081 4/4 Homo sapiens Blood plasma DG
SEC (non-commercial)
Vergauwen, Glenn 2021 50%

Study summary

Full title
All authors
Glenn Vergauwen, Joeri Tulkens, Cláudio Pinheiro, Francisco Avila Cobos, Sándor Dedeyne, Marie-Angélique De Scheerder, Linos Vandekerckhove, Francis Impens, Ilkka Miinalainen, Geert Braems, Kris Gevaert, Pieter Mestdagh, Jo Vandesompele, Hannelore Denys, Olivier De Wever, An Hendrix
Journal
J Extracell Vesicles
Abstract
Separating extracellular vesicles (EV) from blood plasma is challenging and complicates their biolog (show more...)Separating extracellular vesicles (EV) from blood plasma is challenging and complicates their biological understanding and biomarker development. In this study, we fractionate blood plasma by combining size-exclusion chromatography (SEC) and OptiPrep density gradient centrifugation to study clinical context-dependent and time-dependent variations in the biomolecular landscape of systemically circulating EV. Using pooled blood plasma samples from breast cancer patients, we first demonstrate the technical repeatability of blood plasma fractionation. Using serial blood plasma samples from HIV and ovarian cancer patients (n = 10) we next show that EV carry a clinical context-dependent and/or time-dependent protein and small RNA composition, including miRNA and tRNA. In addition, differential analysis of blood plasma fractions provides a catalogue of putative proteins not associated with systemically circulating EV. In conclusion, the implementation of blood plasma fractionation allows to advance the biological understanding and biomarker development of systemically circulating EV. (hide)
EV-METRIC
50% (83rd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Blood plasma
Sample origin
HIV
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Density gradient
Size-exclusion chromatography (non-commercial)
Protein markers
EV: None
non-EV: None
Proteomics
yes
EV density (g/ml)
1.09-1.10
Show all info
Study aim
Biomarker/Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Separation Method
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
4
Lowest density fraction
5%
Highest density fraction
40%
Total gradient volume, incl. sample (mL)
16.5
Sample volume (mL)
1
Orientation
Top-down
Rotor type
SW 32.1 Ti
Speed (g)
100000
Duration (min)
1080
Fraction volume (mL)
1
Fraction processing
Size-exclusion chromatography
Size-exclusion chromatography
Total column volume (mL)
10
Sample volume/column (mL)
2
Resin type
Sepharose CL-2B
Characterization: Protein analysis
Protein Concentration Method
Fluorometric assay (e.g. Qubit, NanoOrange,...)
Proteomics database
Yes:
Characterization: RNA analysis
RNA analysis
Type
RNAsequencing
Database
No
Proteinase treatment
No
RNAse treatment
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
None
1 - 4 of 4
  • CM = Commercial method
  • dUC = differential ultracentrifugation
  • DG = density gradient
  • UF = ultrafiltration
  • SEC = size-exclusion chromatography
EV-TRACK ID
EV200081
species
Homo sapiens
sample type
Blood plasma
condition
Control condition
breast cancer
ovarian cancer
HIV
separation protocol
Density gradient
Size-exclusion chromatography (non-commercial)
Density gradient
Size-exclusion chromatography (non-commercial)
Density gradient
Size-exclusion chromatography (non-commercial)
Density gradient
Size-exclusion chromatography (non-commercial)
Exp. nr.
1
2
3
4
EV-METRIC %
88
50
50
50