Search > Results

You searched for: EV230572 (EV-TRACK ID)

Showing 1 - 6 of 6

Experiment number
  • If needed, multiple experiments were identified in a single publication based on differing sample types, separation protocols and/or vesicle types of interest.
Species
  • Species of origin of the EVs.
Separation protocol
  • Gives a short, non-chronological overview of the different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Details EV-TRACK ID Experiment nr. Species Sample type Separation protocol First author Year EV-METRIC
EV230572 3/6 Homo sapiens HEK293-GFP (d)(U)C Djeungoue-Petga, Marie-Ange 2024 67%

Study summary

Full title
All authors
Marie Ange Djeungoue Petgaa, Catherine Taylora, Alexander Macpherson, Surendar Reddy Dhadi, Thomas Rollin, Jeremy W. Roya, Anirban Ghosh, Stephen M. Lewis, Rodney J. Ouellette
Journal
Abstract
Extracellular vesicles (EVs) are gaining interest as efficient, biocompatible vehicles for cellular (show more...)Extracellular vesicles (EVs) are gaining interest as efficient, biocompatible vehicles for cellular delivery of therapeutic cargo. Precipitation-based methods for the isolation of EVs remain popular due to ease of use and lack of requirements for specialized equipment. We describe here a novel charge-based EV isolation method that is simple, scalable, and uses inexpensive polyethylenimine (PEI) polymers. GFP-expressing EVs were isolated from the conditioned cell culture (CCM) media of HEK293-GFP cells using either branched 10 kDa PEI (B-PEI) or linear 25 kDa PEI (L-PEI). Isolated EVs were characterized by Western blotting, nanoparticle tracking analysis, transmission electron microscopy (TEM), and flow cytometry. Western blotting for common EV markers, including CD63, CD9, flotillin-1, and heat shock protein 70 were positive, while GRP94, a marker for cellular contamination, was negative. Isolated EVs had a mean diameter of 146 nm for B-PEI and 175 nm for L- PEI, while TEM revealed a spherical cup-shaped appearance typical of EVs. In addition, we determined that PEI-based EV isolation methods were scalable up to volumes of at least 50 mL. EVs isolated from CCM collected from SUM159 cells that express CD63 fused to a dual EGFP-Renilla-split tag were tested for their ability to reconstitute functional luciferase by delivering the CD63-EGFP-Renilla-split tag to SUM159 recipient cells loaded with a cytopermeable Renilla luciferase substrate. Although EVs isolated using L-PEI behaved similarly to EVs isolated using ultracentrifugation, we observed that EVs isolated using B-PEI produced a more rapid uptake and delivery of active luciferase. In this study we demonstrate that both branched and linear PEI polymers can precipitate EVs from CCM. Furthermore, once eluted from the polymers, the isolated EVs were able to deliver functional protein cargo to recipient cells. Overall, our data support PEI-based isolation of EVs as a simple, rapid method for the recovery of functional EVs. (hide)
EV-METRIC
67% (94th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
GFP overexpression
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Protein markers
EV: CD9/ CD63/ Flotillin-1/ HSP70/ GFP
non-EV: GRP94
Proteomics
no
Show all info
Study aim
Mechanism of uptake/transfer/New methodological development/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
HEK293-GFP
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
>=18h at >= 100,000g
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: rotor type
SW 40 Ti
Pelleting: speed (g)
100000
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
CD9/ CD63/ Flotillin-1/ HSP70/ GFP
Not detected contaminants
GRP94
Flow cytometry
Type of Flow cytometry
Beckman Coulter Cytoflex
Hardware adaptation to ~100nm EV's
The better resolution of the CytoFLEX is reached by using the violet side scatter of the 405 nm laser (manually set to 1600 and height threshold) and by performing preanalytical preparations with Fluorescent Megamix-Plus SSC beads (Cosmo Bio Co., LTD, Japan) which are FITC-labeled beads of increasing size (100, 160, 200, 240, 300, 500, 900 nm). beads were used to set the EV gate and manual gating was set to the populations of interest with reference to a negative control sample (GFP- EVs from HEK293 cells)
Calibration bead size
0.1/ 0.16/ 0.2/ 0.24/ 0.3/ 0.5/ 0.9
Antibody details provided?
No
Detected EV-associated proteins
GFP
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
~172
EV concentration
Yes
Particle yield
particles per milliliter of starting sample: 6.00E+09
Particle analysis: flow cytometry
Flow cytometer type
Nanoscale
Hardware adjustment
The better resolution of the CytoFLEX is reached by using the violet side scatter of the 405 nm laser (manually set to 1600 and height threshold) and by performing preanalytical preparations with Fluorescent Megamix-Plus SSC beads (Cosmo Bio Co., LTD, Japan) which are FITC-labeled beads of increasing size (100, 160, 200, 240, 300, 500, 900 nm). beads were used to set the EV gate and manual gating was set to the populations of interest with reference to a negative control sample (GFP- EVs from HEK293 cells)
Calibration bead size
0.1/ 0.16/ 0.2/ 0.24/ 0.3/ 0.5/ 0.9
EV concentration
Yes
Particle yield
particles per milliliter of starting sample: 9.00E+06
EM
EM-type
Transmission-EM
Image type
Close-up
EV230572 4/6 Homo sapiens HEK293-GFP PEI precipitation Djeungoue-Petga, Marie-Ange 2024 63%

Study summary

Full title
All authors
Marie Ange Djeungoue Petgaa, Catherine Taylora, Alexander Macpherson, Surendar Reddy Dhadi, Thomas Rollin, Jeremy W. Roya, Anirban Ghosh, Stephen M. Lewis, Rodney J. Ouellette
Journal
Abstract
Extracellular vesicles (EVs) are gaining interest as efficient, biocompatible vehicles for cellular (show more...)Extracellular vesicles (EVs) are gaining interest as efficient, biocompatible vehicles for cellular delivery of therapeutic cargo. Precipitation-based methods for the isolation of EVs remain popular due to ease of use and lack of requirements for specialized equipment. We describe here a novel charge-based EV isolation method that is simple, scalable, and uses inexpensive polyethylenimine (PEI) polymers. GFP-expressing EVs were isolated from the conditioned cell culture (CCM) media of HEK293-GFP cells using either branched 10 kDa PEI (B-PEI) or linear 25 kDa PEI (L-PEI). Isolated EVs were characterized by Western blotting, nanoparticle tracking analysis, transmission electron microscopy (TEM), and flow cytometry. Western blotting for common EV markers, including CD63, CD9, flotillin-1, and heat shock protein 70 were positive, while GRP94, a marker for cellular contamination, was negative. Isolated EVs had a mean diameter of 146 nm for B-PEI and 175 nm for L- PEI, while TEM revealed a spherical cup-shaped appearance typical of EVs. In addition, we determined that PEI-based EV isolation methods were scalable up to volumes of at least 50 mL. EVs isolated from CCM collected from SUM159 cells that express CD63 fused to a dual EGFP-Renilla-split tag were tested for their ability to reconstitute functional luciferase by delivering the CD63-EGFP-Renilla-split tag to SUM159 recipient cells loaded with a cytopermeable Renilla luciferase substrate. Although EVs isolated using L-PEI behaved similarly to EVs isolated using ultracentrifugation, we observed that EVs isolated using B-PEI produced a more rapid uptake and delivery of active luciferase. In this study we demonstrate that both branched and linear PEI polymers can precipitate EVs from CCM. Furthermore, once eluted from the polymers, the isolated EVs were able to deliver functional protein cargo to recipient cells. Overall, our data support PEI-based isolation of EVs as a simple, rapid method for the recovery of functional EVs. (hide)
EV-METRIC
63% (93rd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
GFP overexpresion
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
PEI precipitation
Protein markers
EV: CD9/ CD63/ Flotillin-1/ HSP70/ GFP
non-EV: GRP94
Proteomics
no
Show all info
Study aim
Mechanism of uptake/transfer/New methodological development/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
HEK293-GFP
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
>=18h at >= 100,000g
Separation Method
Other
Name other separation method
PEI precipitation
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
CD9/ CD63/ Flotillin-1/ HSP70/ GFP
Not detected contaminants
GRP94
Flow cytometry
Type of Flow cytometry
Beckman Coulter Cytoflex
Hardware adaptation to ~100nm EV's
The better resolution of the CytoFLEX is reached by using the violet side scatter of the 405 nm laser (manually set to 1600 and height threshold) and by performing preanalytical preparations with Fluorescent Megamix-Plus SSC beads (Cosmo Bio Co., LTD, Japan) which are FITC-labeled beads of increasing size (100, 160, 200, 240, 300, 500, 900 nm). beads were used to set the EV gate and manual gating was set to the populations of interest with reference to a negative control sample (GFP- EVs from HEK293 cells)
Calibration bead size
0.1/ 0.16/ 0.2/ 0.24/ 0.3/ 0.5/ 0.9
Antibody details provided?
No
Detected EV-associated proteins
GFP
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
146-200
EV concentration
Yes
Particle yield
particles per milliliter of starting sample: 1-6E10
Particle analysis: flow cytometry
Flow cytometer type
Nanoscale
Hardware adjustment
The better resolution of the CytoFLEX is reached by using the violet side scatter of the 405 nm laser (manually set to 1600 and height threshold) and by performing preanalytical preparations with Fluorescent Megamix-Plus SSC beads (Cosmo Bio Co., LTD, Japan) which are FITC-labeled beads of increasing size (100, 160, 200, 240, 300, 500, 900 nm). beads were used to set the EV gate and manual gating was set to the populations of interest with reference to a negative control sample (GFP- EVs from HEK293 cells)
Calibration bead size
0.1/ 0.16/ 0.2/ 0.24/ 0.3/ 0.5/ 0.9
Particle yield
particles per milliliter of starting sample: 1-6E10
EM
EM-type
Transmission-EM
Image type
Close-up
EV230572 1/6 Homo sapiens HEK293 (d)(U)C Djeungoue-Petga, Marie-Ange 2024 56%

Study summary

Full title
All authors
Marie Ange Djeungoue Petgaa, Catherine Taylora, Alexander Macpherson, Surendar Reddy Dhadi, Thomas Rollin, Jeremy W. Roya, Anirban Ghosh, Stephen M. Lewis, Rodney J. Ouellette
Journal
Abstract
Extracellular vesicles (EVs) are gaining interest as efficient, biocompatible vehicles for cellular (show more...)Extracellular vesicles (EVs) are gaining interest as efficient, biocompatible vehicles for cellular delivery of therapeutic cargo. Precipitation-based methods for the isolation of EVs remain popular due to ease of use and lack of requirements for specialized equipment. We describe here a novel charge-based EV isolation method that is simple, scalable, and uses inexpensive polyethylenimine (PEI) polymers. GFP-expressing EVs were isolated from the conditioned cell culture (CCM) media of HEK293-GFP cells using either branched 10 kDa PEI (B-PEI) or linear 25 kDa PEI (L-PEI). Isolated EVs were characterized by Western blotting, nanoparticle tracking analysis, transmission electron microscopy (TEM), and flow cytometry. Western blotting for common EV markers, including CD63, CD9, flotillin-1, and heat shock protein 70 were positive, while GRP94, a marker for cellular contamination, was negative. Isolated EVs had a mean diameter of 146 nm for B-PEI and 175 nm for L- PEI, while TEM revealed a spherical cup-shaped appearance typical of EVs. In addition, we determined that PEI-based EV isolation methods were scalable up to volumes of at least 50 mL. EVs isolated from CCM collected from SUM159 cells that express CD63 fused to a dual EGFP-Renilla-split tag were tested for their ability to reconstitute functional luciferase by delivering the CD63-EGFP-Renilla-split tag to SUM159 recipient cells loaded with a cytopermeable Renilla luciferase substrate. Although EVs isolated using L-PEI behaved similarly to EVs isolated using ultracentrifugation, we observed that EVs isolated using B-PEI produced a more rapid uptake and delivery of active luciferase. In this study we demonstrate that both branched and linear PEI polymers can precipitate EVs from CCM. Furthermore, once eluted from the polymers, the isolated EVs were able to deliver functional protein cargo to recipient cells. Overall, our data support PEI-based isolation of EVs as a simple, rapid method for the recovery of functional EVs. (hide)
EV-METRIC
56% (90th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Protein markers
EV: CD9/ CD63/ Flotillin-1/ HSP70/ GFP
non-EV: GRP94
Proteomics
no
Show all info
Study aim
Mechanism of uptake/transfer/New methodological development/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
HEK293
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
>=18h at >= 100,000g
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: rotor type
SW 40 Ti
Pelleting: speed (g)
100000
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
CD9/ CD63/ Flotillin-1/ HSP70
Not detected EV-associated proteins
GFP
Not detected contaminants
GRP94
Flow cytometry
Type of Flow cytometry
Beckman Coulter Cytoflex
Hardware adaptation to ~100nm EV's
The better resolution of the CytoFLEX is reached by using the violet side scatter of the 405 nm laser (manually set to 1600 and height threshold) and by performing preanalytical preparations with Fluorescent Megamix-Plus SSC beads (Cosmo Bio Co., LTD, Japan) which are FITC-labeled beads of increasing size (100, 160, 200, 240, 300, 500, 900 nm). beads were used to set the EV gate and manual gating was set to the populations of interest with reference to a negative control sample (GFP- EVs from HEK293 cells)
Calibration bead size
0.1/ 0.16/ 0.2/ 0.24/ 0.3/ 0.5/ 0.9
Antibody details provided?
No
Not detected EV-associated proteins
GFP
Characterization: Lipid analysis
No
Characterization: Particle analysis
None
Extra information
two kinds of PEI were used. Linear PEI 25 kDa and Branched 10 kDa
EV230572 2/6 Homo sapiens HEK293 PEI precipitation Djeungoue-Petga, Marie-Ange 2024 50%

Study summary

Full title
All authors
Marie Ange Djeungoue Petgaa, Catherine Taylora, Alexander Macpherson, Surendar Reddy Dhadi, Thomas Rollin, Jeremy W. Roya, Anirban Ghosh, Stephen M. Lewis, Rodney J. Ouellette
Journal
Abstract
Extracellular vesicles (EVs) are gaining interest as efficient, biocompatible vehicles for cellular (show more...)Extracellular vesicles (EVs) are gaining interest as efficient, biocompatible vehicles for cellular delivery of therapeutic cargo. Precipitation-based methods for the isolation of EVs remain popular due to ease of use and lack of requirements for specialized equipment. We describe here a novel charge-based EV isolation method that is simple, scalable, and uses inexpensive polyethylenimine (PEI) polymers. GFP-expressing EVs were isolated from the conditioned cell culture (CCM) media of HEK293-GFP cells using either branched 10 kDa PEI (B-PEI) or linear 25 kDa PEI (L-PEI). Isolated EVs were characterized by Western blotting, nanoparticle tracking analysis, transmission electron microscopy (TEM), and flow cytometry. Western blotting for common EV markers, including CD63, CD9, flotillin-1, and heat shock protein 70 were positive, while GRP94, a marker for cellular contamination, was negative. Isolated EVs had a mean diameter of 146 nm for B-PEI and 175 nm for L- PEI, while TEM revealed a spherical cup-shaped appearance typical of EVs. In addition, we determined that PEI-based EV isolation methods were scalable up to volumes of at least 50 mL. EVs isolated from CCM collected from SUM159 cells that express CD63 fused to a dual EGFP-Renilla-split tag were tested for their ability to reconstitute functional luciferase by delivering the CD63-EGFP-Renilla-split tag to SUM159 recipient cells loaded with a cytopermeable Renilla luciferase substrate. Although EVs isolated using L-PEI behaved similarly to EVs isolated using ultracentrifugation, we observed that EVs isolated using B-PEI produced a more rapid uptake and delivery of active luciferase. In this study we demonstrate that both branched and linear PEI polymers can precipitate EVs from CCM. Furthermore, once eluted from the polymers, the isolated EVs were able to deliver functional protein cargo to recipient cells. Overall, our data support PEI-based isolation of EVs as a simple, rapid method for the recovery of functional EVs. (hide)
EV-METRIC
50% (87th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
PEI precipitation
Protein markers
EV: CD9/ CD63/ Flotillin-1/ HSP70/ GFP
non-EV: GRP94
Proteomics
no
Show all info
Study aim
Mechanism of uptake/transfer/New methodological development/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
HEK293
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
>=18h at >= 100,000g
Separation Method
Other
Name other separation method
PEI precipitation
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
CD9/ CD63/ Flotillin-1/ HSP70
Not detected EV-associated proteins
GFP
Not detected contaminants
GRP94
Flow cytometry
Type of Flow cytometry
Beckman Coulter Cytoflex
Hardware adaptation to ~100nm EV's
The better resolution of the CytoFLEX is reached by using the violet side scatter of the 405 nm laser (manually set to 1600 and height threshold) and by performing preanalytical preparations with Fluorescent Megamix-Plus SSC beads (Cosmo Bio Co., LTD, Japan) which are FITC-labeled beads of increasing size (100, 160, 200, 240, 300, 500, 900 nm). beads were used to set the EV gate and manual gating was set to the populations of interest with reference to a negative control sample (GFP- EVs from HEK293 cells)
Calibration bead size
0.1/ 0.16/ 0.2/ 0.24/ 0.3/ 0.5/ 0.9
Antibody details provided?
No
Not detected EV-associated proteins
GFP
Characterization: Lipid analysis
No
Characterization: Particle analysis
None
EV230572 5/6 Homo sapiens SUM159-DSP1-CD63/DSP2 (d)(U)C Djeungoue-Petga, Marie-Ange 2024 14%

Study summary

Full title
All authors
Marie Ange Djeungoue Petgaa, Catherine Taylora, Alexander Macpherson, Surendar Reddy Dhadi, Thomas Rollin, Jeremy W. Roya, Anirban Ghosh, Stephen M. Lewis, Rodney J. Ouellette
Journal
Abstract
Extracellular vesicles (EVs) are gaining interest as efficient, biocompatible vehicles for cellular (show more...)Extracellular vesicles (EVs) are gaining interest as efficient, biocompatible vehicles for cellular delivery of therapeutic cargo. Precipitation-based methods for the isolation of EVs remain popular due to ease of use and lack of requirements for specialized equipment. We describe here a novel charge-based EV isolation method that is simple, scalable, and uses inexpensive polyethylenimine (PEI) polymers. GFP-expressing EVs were isolated from the conditioned cell culture (CCM) media of HEK293-GFP cells using either branched 10 kDa PEI (B-PEI) or linear 25 kDa PEI (L-PEI). Isolated EVs were characterized by Western blotting, nanoparticle tracking analysis, transmission electron microscopy (TEM), and flow cytometry. Western blotting for common EV markers, including CD63, CD9, flotillin-1, and heat shock protein 70 were positive, while GRP94, a marker for cellular contamination, was negative. Isolated EVs had a mean diameter of 146 nm for B-PEI and 175 nm for L- PEI, while TEM revealed a spherical cup-shaped appearance typical of EVs. In addition, we determined that PEI-based EV isolation methods were scalable up to volumes of at least 50 mL. EVs isolated from CCM collected from SUM159 cells that express CD63 fused to a dual EGFP-Renilla-split tag were tested for their ability to reconstitute functional luciferase by delivering the CD63-EGFP-Renilla-split tag to SUM159 recipient cells loaded with a cytopermeable Renilla luciferase substrate. Although EVs isolated using L-PEI behaved similarly to EVs isolated using ultracentrifugation, we observed that EVs isolated using B-PEI produced a more rapid uptake and delivery of active luciferase. In this study we demonstrate that both branched and linear PEI polymers can precipitate EVs from CCM. Furthermore, once eluted from the polymers, the isolated EVs were able to deliver functional protein cargo to recipient cells. Overall, our data support PEI-based isolation of EVs as a simple, rapid method for the recovery of functional EVs. (hide)
EV-METRIC
14% (44th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
DSP1-CD63/DSP2 overexpression
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Protein markers
EV: None
non-EV: None
Proteomics
no
Show all info
Study aim
Mechanism of uptake/transfer/New methodological development/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
SUM159-DSP1-CD63/DSP2
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
>=18h at >= 100,000g
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: rotor type
SW 40 Ti
Pelleting: speed (g)
100000
Characterization: Protein analysis
None
Protein Concentration Method
Not determined
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
~180
EV concentration
Yes
Particle yield
particles per milliliter of starting sample: 5-7E07
EV230572 6/6 Homo sapiens SUM159-DSP1-CD63/DSP2 PEI precipitation Djeungoue-Petga, Marie-Ange 2024 0%

Study summary

Full title
All authors
Marie Ange Djeungoue Petgaa, Catherine Taylora, Alexander Macpherson, Surendar Reddy Dhadi, Thomas Rollin, Jeremy W. Roya, Anirban Ghosh, Stephen M. Lewis, Rodney J. Ouellette
Journal
Abstract
Extracellular vesicles (EVs) are gaining interest as efficient, biocompatible vehicles for cellular (show more...)Extracellular vesicles (EVs) are gaining interest as efficient, biocompatible vehicles for cellular delivery of therapeutic cargo. Precipitation-based methods for the isolation of EVs remain popular due to ease of use and lack of requirements for specialized equipment. We describe here a novel charge-based EV isolation method that is simple, scalable, and uses inexpensive polyethylenimine (PEI) polymers. GFP-expressing EVs were isolated from the conditioned cell culture (CCM) media of HEK293-GFP cells using either branched 10 kDa PEI (B-PEI) or linear 25 kDa PEI (L-PEI). Isolated EVs were characterized by Western blotting, nanoparticle tracking analysis, transmission electron microscopy (TEM), and flow cytometry. Western blotting for common EV markers, including CD63, CD9, flotillin-1, and heat shock protein 70 were positive, while GRP94, a marker for cellular contamination, was negative. Isolated EVs had a mean diameter of 146 nm for B-PEI and 175 nm for L- PEI, while TEM revealed a spherical cup-shaped appearance typical of EVs. In addition, we determined that PEI-based EV isolation methods were scalable up to volumes of at least 50 mL. EVs isolated from CCM collected from SUM159 cells that express CD63 fused to a dual EGFP-Renilla-split tag were tested for their ability to reconstitute functional luciferase by delivering the CD63-EGFP-Renilla-split tag to SUM159 recipient cells loaded with a cytopermeable Renilla luciferase substrate. Although EVs isolated using L-PEI behaved similarly to EVs isolated using ultracentrifugation, we observed that EVs isolated using B-PEI produced a more rapid uptake and delivery of active luciferase. In this study we demonstrate that both branched and linear PEI polymers can precipitate EVs from CCM. Furthermore, once eluted from the polymers, the isolated EVs were able to deliver functional protein cargo to recipient cells. Overall, our data support PEI-based isolation of EVs as a simple, rapid method for the recovery of functional EVs. (hide)
EV-METRIC
0% (median: 14% of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
DSP1-CD63/DSP2 overexpression
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
PEI precipitation
Protein markers
EV: None
non-EV: None
Proteomics
no
Show all info
Study aim
Mechanism of uptake/transfer/New methodological development/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
SUM159-DSP1-CD63/DSP2
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
>=18h at >= 100,000g
Separation Method
Other
Name other separation method
PEI precipitation
Characterization: Protein analysis
None
Protein Concentration Method
Not determined
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
200-300
EV concentration
Yes
Particle yield
particles per milliliter of starting sample: 2-3.5E06
1 - 6 of 6
  • CM = Commercial method
  • dUC = differential ultracentrifugation
  • DG = density gradient
  • UF = ultrafiltration
  • SEC = size-exclusion chromatography
EV-TRACK ID
EV230572
species
Homo
sapiens
sample type
Cell
culture
cell type
HEK293-GFP
HEK293-GFP
HEK293
HEK293
SUM159-DSP1-CD63/DSP2
SUM159-DSP1-CD63/DSP2
condition
GFP
overexpression
GFP
overexpresion
Control
condition
Control
condition
DSP1-CD63/DSP2
overexpression
DSP1-CD63/DSP2
overexpression
separation protocol
dUC
PEI
precipitation
dUC
PEI
precipitation
dUC
PEI
precipitation
Exp. nr.
3
4
1
2
5
6
EV-METRIC %
67
63
56
50
14
0