Search > Results

You searched for: EV130151 (EV-TRACK ID)

Showing 1 - 4 of 4

Experiment number
  • If needed, multiple experiments were identified in a single publication based on differing sample types, separation protocols and/or vesicle types of interest.
Species
  • Species of origin of the EVs.
Separation protocol
  • Gives a short, non-chronological overview of the different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Experiment number
  • Experiments differ in Sample type
Experiment number
  • Experiments differ in Sample type
Experiment number
  • Experiments differ in Sample type
Experiment number
  • Experiments differ in Sample type
Details EV-TRACK ID Experiment nr. Species Sample type Separation protocol First author Year EV-METRIC
EV130151 4/4 Homo sapiens NAY (d)(U)C
Filtration
SEC
UF
Redzic JS 2013 38%

Study summary

Full title
All authors
Redzic JS, Kendrick AA, Bahmed K, Dahl KD, Pearson CG, Robinson WA, Robinson SE, Graner MW, Eisenmesser EZ
Journal
PLoS One
Abstract
Extracellular vesicles (EVs) are key contributors to cancer where they play an integral role in cell (show more...)Extracellular vesicles (EVs) are key contributors to cancer where they play an integral role in cell-cell communication and transfer pro-oncogenic molecules to recipient cells thereby conferring a cancerous phenotype. Here, we purified EVs using straightforward biochemical approaches from multiple cancer cell lines and subsequently characterized these EVs via multiple biochemical and biophysical methods. In addition, we used fluorescence microscopy to directly show internalization of EVs into the recipient cells within a few minutes upon addition of EVs to recipient cells. We confirmed that the transmembrane protein EMMPRIN, postulated to be a marker of EVs, was indeed secreted from all cell lines studied here. We evaluated the response to EV stimulation in several different types of recipient cells lines and measured the ability of these purified EVs to induce secretion of several factors highly upregulated in human cancers. Our data indicate that purified EVs preferentially stimulate secretion of several proteins implicated in driving cancer in monocytic cells but only harbor limited activity in epithelial cells. Specifically, we show that EVs are potent stimulators of MMP-9, IL-6, TGF-?1 and induce the secretion of extracellular EMMPRIN, which all play a role in driving immune evasion, invasion and inflammation in the tumor microenvironment. Thus, by using a comprehensive approach that includes biochemical, biological, and spectroscopic methods, we have begun to elucidate the stimulatory roles. (hide)
EV-METRIC
38% (79th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
NAY
Focus vesicles
extracellular vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Filtration
SEC
UF
Protein markers
EV: EMMPRIN
non-EV:
Proteomics
yes
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-harvesting Medium
EV Depleted
Separation Method
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
EMMPRIN
ELISA
Antibody details provided?
No
Detected EV-associated proteins
EMMPRIN
Characterization: Particle analysis
NTA
EM
EM-type
transmission EM
Image type
Close-up, Wide-field
Report size (nm)
Not reported
EV130151 3/4 Homo sapiens Serum (d)(U)C
Filtration
IAF
Redzic JS 2013 13%

Study summary

Full title
All authors
Redzic JS, Kendrick AA, Bahmed K, Dahl KD, Pearson CG, Robinson WA, Robinson SE, Graner MW, Eisenmesser EZ
Journal
PLoS One
Abstract
Extracellular vesicles (EVs) are key contributors to cancer where they play an integral role in cell (show more...)Extracellular vesicles (EVs) are key contributors to cancer where they play an integral role in cell-cell communication and transfer pro-oncogenic molecules to recipient cells thereby conferring a cancerous phenotype. Here, we purified EVs using straightforward biochemical approaches from multiple cancer cell lines and subsequently characterized these EVs via multiple biochemical and biophysical methods. In addition, we used fluorescence microscopy to directly show internalization of EVs into the recipient cells within a few minutes upon addition of EVs to recipient cells. We confirmed that the transmembrane protein EMMPRIN, postulated to be a marker of EVs, was indeed secreted from all cell lines studied here. We evaluated the response to EV stimulation in several different types of recipient cells lines and measured the ability of these purified EVs to induce secretion of several factors highly upregulated in human cancers. Our data indicate that purified EVs preferentially stimulate secretion of several proteins implicated in driving cancer in monocytic cells but only harbor limited activity in epithelial cells. Specifically, we show that EVs are potent stimulators of MMP-9, IL-6, TGF-?1 and induce the secretion of extracellular EMMPRIN, which all play a role in driving immune evasion, invasion and inflammation in the tumor microenvironment. Thus, by using a comprehensive approach that includes biochemical, biological, and spectroscopic methods, we have begun to elucidate the stimulatory roles. (hide)
EV-METRIC
13% (47th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Serum
Sample origin
NAY
Focus vesicles
extracellular vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Filtration
IAF
Protein markers
EV: EMMPRIN
non-EV:
Proteomics
yes
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Serum
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Pelleting performed
No
Filtration steps
0.22µm or 0.2µm
Immunoaffinity capture
Selected surface protein(s)
EMMPRIN
Characterization: Protein analysis
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
EMMPRIN
ELISA
Antibody details provided?
No
Detected EV-associated proteins
EMMPRIN
Characterization: Particle analysis
None
EV130151 1/4 Homo sapiens Ascites (d)(U)C
Filtration
IAF
Redzic JS 2013 0%

Study summary

Full title
All authors
Redzic JS, Kendrick AA, Bahmed K, Dahl KD, Pearson CG, Robinson WA, Robinson SE, Graner MW, Eisenmesser EZ
Journal
PLoS One
Abstract
Extracellular vesicles (EVs) are key contributors to cancer where they play an integral role in cell (show more...)Extracellular vesicles (EVs) are key contributors to cancer where they play an integral role in cell-cell communication and transfer pro-oncogenic molecules to recipient cells thereby conferring a cancerous phenotype. Here, we purified EVs using straightforward biochemical approaches from multiple cancer cell lines and subsequently characterized these EVs via multiple biochemical and biophysical methods. In addition, we used fluorescence microscopy to directly show internalization of EVs into the recipient cells within a few minutes upon addition of EVs to recipient cells. We confirmed that the transmembrane protein EMMPRIN, postulated to be a marker of EVs, was indeed secreted from all cell lines studied here. We evaluated the response to EV stimulation in several different types of recipient cells lines and measured the ability of these purified EVs to induce secretion of several factors highly upregulated in human cancers. Our data indicate that purified EVs preferentially stimulate secretion of several proteins implicated in driving cancer in monocytic cells but only harbor limited activity in epithelial cells. Specifically, we show that EVs are potent stimulators of MMP-9, IL-6, TGF-?1 and induce the secretion of extracellular EMMPRIN, which all play a role in driving immune evasion, invasion and inflammation in the tumor microenvironment. Thus, by using a comprehensive approach that includes biochemical, biological, and spectroscopic methods, we have begun to elucidate the stimulatory roles. (hide)
EV-METRIC
0% (median: 13% of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Ascites
Sample origin
NAY
Focus vesicles
extracellular vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Filtration
IAF
Protein markers
EV: EMMPRIN
non-EV:
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Ascites
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Pelleting performed
No
Filtration steps
0.22µm or 0.2µm
Immunoaffinity capture
Selected surface protein(s)
EMMPRIN
Characterization: Protein analysis
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
EMMPRIN
ELISA
Antibody details provided?
No
Detected EV-associated proteins
EMMPRIN
Characterization: Particle analysis
None
EV130151 2/4 Homo sapiens Blood plasma (d)(U)C
Filtration
IAF
Redzic JS 2013 0%

Study summary

Full title
All authors
Redzic JS, Kendrick AA, Bahmed K, Dahl KD, Pearson CG, Robinson WA, Robinson SE, Graner MW, Eisenmesser EZ
Journal
PLoS One
Abstract
Extracellular vesicles (EVs) are key contributors to cancer where they play an integral role in cell (show more...)Extracellular vesicles (EVs) are key contributors to cancer where they play an integral role in cell-cell communication and transfer pro-oncogenic molecules to recipient cells thereby conferring a cancerous phenotype. Here, we purified EVs using straightforward biochemical approaches from multiple cancer cell lines and subsequently characterized these EVs via multiple biochemical and biophysical methods. In addition, we used fluorescence microscopy to directly show internalization of EVs into the recipient cells within a few minutes upon addition of EVs to recipient cells. We confirmed that the transmembrane protein EMMPRIN, postulated to be a marker of EVs, was indeed secreted from all cell lines studied here. We evaluated the response to EV stimulation in several different types of recipient cells lines and measured the ability of these purified EVs to induce secretion of several factors highly upregulated in human cancers. Our data indicate that purified EVs preferentially stimulate secretion of several proteins implicated in driving cancer in monocytic cells but only harbor limited activity in epithelial cells. Specifically, we show that EVs are potent stimulators of MMP-9, IL-6, TGF-?1 and induce the secretion of extracellular EMMPRIN, which all play a role in driving immune evasion, invasion and inflammation in the tumor microenvironment. Thus, by using a comprehensive approach that includes biochemical, biological, and spectroscopic methods, we have begun to elucidate the stimulatory roles. (hide)
EV-METRIC
0% (median: 22% of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Blood plasma
Sample origin
NAY
Focus vesicles
extracellular vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Filtration
IAF
Protein markers
EV: EMMPRIN
non-EV:
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Pelleting performed
No
Filtration steps
0.22µm or 0.2µm
Immunoaffinity capture
Selected surface protein(s)
EMMPRIN
Characterization: Protein analysis
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
EMMPRIN
ELISA
Antibody details provided?
No
Detected EV-associated proteins
EMMPRIN
Characterization: Particle analysis
None
1 - 4 of 4
  • CM = Commercial method
  • dUC = differential ultracentrifugation
  • DG = density gradient
  • UF = ultrafiltration
  • SEC = size-exclusion chromatography
EV-TRACK ID
EV130151
species
Homo sapiens
sample type
Cell culture
Serum
Ascites
Blood plasma
cell type
NAY
NA
NA
NA
medium
EV Depleted
condition
NAY
NAY
NAY
NAY
separation protocol
(d)(U)C
Filtration
SEC
UF
(d)(U)C
Filtration
IAF
(d)(U)C
Filtration
IAF
(d)(U)C
Filtration
IAF
Exp. nr.
4
3
1
2
EV-METRIC %
38
13
0
0